1887

Abstract

Physiology of the exponential and stationary phase of growth, under both aerobic and microaerobic conditions, of and its isogenic mutants ::Km, ::Tn, Δ and Δ was studied using transcriptional fusions with the and genes. In the wild-type strain, transcription was greater under aerobic than under microaerobic conditions, whereas transcription of was suppressed by aerobiosis. Under aerobic conditions, no interaction between NuoG, CydA, ArcA and RpoS was detected. Under microaerobic conditions, was suppressed in the mutant as compared with the wild-type strain, but it was overexpressed in the and mutants. A deletion in the gene, on the other hand, resulted in non-restricted, increased expression in stationary-phase cultures under microaerobic conditions. Based on the transcription in the mutant the authors propose that the decrease in the NADH:NAD ratio that occurs when carbon sources become limiting serves as a signal for increased transcription, while active respiration catalysed by CydA and controlled by ArcA downregulates transcription. When, finally, the RpoS-controlled stationary phase of growth is reached, is suppressed in an RpoS-dependent fashion. Transition into stationary phase under microaerobic conditions is thus controlled by coordinated action of the RpoS and ArcA regulators, depending on subtle changes in the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-701
2001-03-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470701a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-701&mimeType=html&fmt=ahah

References

  1. Allen-Vercoe E., Collighan R., Woodward M. J. 1998; The variant rpoS allele of S. enteritidis strain 27655R does not affect virulence in a chick model nor constitutive curliation but does generate a cold-sensitive phenotype. FEMS Microbiol Lett167:245–253[CrossRef]
    [Google Scholar]
  2. Barrow P. A., Lovell M. A., Barber Z. 1996; Growth suppression in early-stationary-phase nutrient broth cultures of Salmonella typhimurium and Escherichia coli is genus specific and not regulated by σS. J Bacteriol178:3072–3076
    [Google Scholar]
  3. Cotter P. A., Melville S. B., Albrecht J. A., Gunsalus R. P. 1997; Aerobic regulation of cytochrome d oxidase ( cydAB ) operon expression in Escherichia coli : roles of Fnr and ArcA in repression and activation. Mol Microbiol25:605–615[CrossRef]
    [Google Scholar]
  4. Cui Y., Chatterjee A., Liu Y., Dumenyo C. K., Chatterjee A. K. 1995; Identification of a global repressor gene, rsmA , of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N -(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol177:5108–5115
    [Google Scholar]
  5. Falk-Krzesinski H. J., Wolfe A. J. 1998; Genetic analysis of the nuo locus, which encodes the proton-translocating NADH dehydrogenase in Escherichia coli . J Bacteriol180:1174–1184
    [Google Scholar]
  6. Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., Guiney D. G. 1992; The alternative sigma factor KatF (RpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA89:11978–11982[CrossRef]
    [Google Scholar]
  7. Farewell A., Kvint K., Nystrom T. 1998; Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol29:1039–1051[CrossRef]
    [Google Scholar]
  8. Fuqua W. C., Winans S. C., Greenberg E. P. 1994; Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176:269–275
    [Google Scholar]
  9. Goldman B. S., Gabbert K. K., Kranz R. G. 1996; The temperature-sensitive growth and survival phenotypes of Escherichia coli cyd DC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents. J Bacteriol178:6348–6351
    [Google Scholar]
  10. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. 1991; Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli . J Bacteriol173:7918–7924
    [Google Scholar]
  11. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59[CrossRef]
    [Google Scholar]
  12. Huisman G. W., Kolter R. 1994; Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265:537–539[CrossRef]
    [Google Scholar]
  13. Iuchi S., Lin E. C. 1988; arcA ( dye ), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA85:1888–1892[CrossRef]
    [Google Scholar]
  14. Iuchi S., Lin E. C. 1992; Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli . J Bacteriol174:3972–3980
    [Google Scholar]
  15. Iuchi S., Weiner L. 1996; Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J Biochem120:1055–1063[CrossRef]
    [Google Scholar]
  16. Iuchi S., Cameron D. C., Lin E. C. 1989; A second global regulator gene ( arcB ) mediating repression of enzymes in aerobic pathways of Escherichia coli . J Bacteriol171:868–873
    [Google Scholar]
  17. Iuchi S., Matsuda Z., Fujiwara T., Lin E. C. 1990a; The arcB gene of Escherichia coli encodes a sensor–regulator protein for anaerobic repression of the arc modulon. Mol Microbiol4:715–727[CrossRef]
    [Google Scholar]
  18. Iuchi S., Chepuri V., Fu H. A., Gennis R. B., Lin E. C. 1990b; Requirement for terminal cytochromes in generation of the aerobic signal for the arc regulatory system in Escherichia coli : study utilizing deletions and lac fusions of cyo and cyd . J Bacteriol172:6020–6025
    [Google Scholar]
  19. Iuchi S., Aristarkhov A., Dong J. M., Taylor J. S., Lin E. C. 1994; Effects of nitrate respiration on expression of the Arc-controlled operons encoding succinate dehydrogenase and flavin-linked l-lactate dehydrogenase. J Bacteriol176:1695–1701
    [Google Scholar]
  20. Kolter R., Siegele D. A., Tormo A. 1993; The stationary phase of bacterial life cycle. Annu Rev Microbiol47:855–874[CrossRef]
    [Google Scholar]
  21. Lange R., Hengge-Aronis R. 1991; Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells is controlled by the novel sigma factor RpoS. J Bacteriol173:4474–4481
    [Google Scholar]
  22. Lange R., Fischer D., Hengge-Aronis R. 1995; Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS , the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli . J Bacteriol177:4676–4680
    [Google Scholar]
  23. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol21:1137–1146[CrossRef]
    [Google Scholar]
  24. Loewen P. C., Hu B., Strutinsky J., Sparling R. 1998; Regulation in the rpoS regulon of Escherichia coli . Can J Microbiol44:707–717[CrossRef]
    [Google Scholar]
  25. Milton D. L., O’Toole R., Horstedt P., Wolf-Watz H. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum . J Bacteriol178:1310–1319
    [Google Scholar]
  26. Nickerson C. A., Curtiss R. 1997; Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection. Infect Immun65:1814–1823
    [Google Scholar]
  27. Nystrom T., Larsson C., Gustafsson L. 1996; Bacterial defense against aging: role of the Escherichia coli ArcA regulator in gene expression, readjusted energy flux and survival during stasis. EMBO J15:3219–3228
    [Google Scholar]
  28. O’Neal C. R., Gabriel W. M., Turk A. K., Libby S. J., Fang F. C., Spector M. P. 1994; RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium . J Bacteriol176:4610–4616
    [Google Scholar]
  29. Olsson O., Koncz C., Szalay A. A. 1988; The use of the luxA gene of the bacterial luciferase operon as a reporter gene. Mol Gen Genet215:1–9[CrossRef]
    [Google Scholar]
  30. Ramseier T. M., Chien S. Y., Saier M. H. 1996; Cooperative interaction between Cra and Fnr in the regulation of the cydAB operon of Escherichia coli . Curr Microbiol33:270–274[CrossRef]
    [Google Scholar]
  31. Seymour R. L., Mishra P. V., Khan M. A., Spector M. P. 1996; Essential roles of core starvation-stress response loci in carbon-starvation-inducible cross-resistance and hydrogen peroxide-inducible adaptive resistance to oxidative challenge in Salmonella typhimurium . Mol Microbiol20:497–505[CrossRef]
    [Google Scholar]
  32. Siegele D. A., Kolter R. 1992; Life after log. J Bacteriol174:345–348
    [Google Scholar]
  33. Siegele D. A., Imlay K., Imlay J. 1996; The stationary-phase-exit defect of cydC [ surB ] mutants is due to the lack of a functional terminal cytochrome oxidase. J Bacteriol178:6091–6096
    [Google Scholar]
  34. Sitnikov D. M., Schineller J. B., Baldwin T. O. 1998; Control of cell division in Escherichia coli : regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction. Proc Natl Acad Sci USA93:336–341
    [Google Scholar]
  35. Surette M. G., Bassler B. L. 1998; Quorum sensing in Escherichia coli and Salmonella typhimurium . Proc Natl Acad Sci USA95:7046–7050[CrossRef]
    [Google Scholar]
  36. Surette M. G., Bassler B. 1999; Regulation of autoinducer production in Salmonella typhimurium . Mol Microbiol31:585–595[CrossRef]
    [Google Scholar]
  37. Surette M. G., Miller M. B., Bassler B. L. 1999; Quorum sensing in Escherichia coli , Salmonella typhimurium , and Vibrio harveyi : a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA96:1639–1644[CrossRef]
    [Google Scholar]
  38. Talukder A. A., Yanai S., Nitta T., Kato A., Yamada M. 1996; RpoS-dependent regulation of genes expressed at late stationary phase in Escherichia coli. FEBS Lett386:177–180[CrossRef]
    [Google Scholar]
  39. Yagi T. 1987; Inhibition of NADH-ubiquinone reductase activity by N , N ′-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms. Biochemistry26:2822–2828[CrossRef]
    [Google Scholar]
  40. Yagi T. 1990; Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch Biochem Biophys281:305–311[CrossRef]
    [Google Scholar]
  41. Zambrano M. M., Kolter R. 1993; Escherichia coli mutants lacking NADH dehydrogenase I have a competitive disadvantage in stationary phase. J Bacteriol175:5642–5647
    [Google Scholar]
  42. Zambrano M. M., Siegele D. A., Almiron M., Tormo A., Kolter R. 1993; Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science259:1757–1760[CrossRef]
    [Google Scholar]
  43. Zgurskaya H. I., Keyhan M., Matin A. 1997; The sigma S level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis. Mol Microbiol24:643–651[CrossRef]
    [Google Scholar]
  44. Zhang-Barber L., Turner A. K., Martin G., Frankel G., Dougan G., Barrow P. A. 1997; Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium and colonization. J Bacteriol179:7186–7190
    [Google Scholar]
  45. Zhang-Barber L., Turner A. K., Dougan G., Barrow P. A. 1998; Protection of chickens against experimental fowl typhoid using a nuoG mutant of Salmonella serotype Gallinarum. Vaccine16:899–903[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-701
Loading
/content/journal/micro/10.1099/00221287-147-3-701
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error