1887

Abstract

The gene of ATCC13032 comprises 438 nucleotides and encodes a protein of 145 amino acids with a molecular mass of 153 kDa. The amino acid sequence revealed extensive similarities to the large ribosomal subunit protein L11 from several Gram-positive and Gram-negative bacteria. The gene is located downstream of , representing part of the protein export apparatus, and of , encoding a transcription antiterminator protein. The gene is followed by an ORF homologous to encoding the 50S ribosomal protein L1. Northern analysis revealed that transcription of the cluster resulted in two different transcripts of 15 and 06 kb. The 15 kb transcript corresponds to the entire cluster and the short transcript originates from the gene. A mutant strain carrying a 12 bp in-frame deletion within , which resulted in the loss of the tetrapeptide Pro-Ala-Leu-Gly in the L11 protein, was constructed. The mutant failed to accumulate (p)ppGpp in response to amino acid starvation and exhibited an increased tolerance to the antibiotic thiostrepton. Evidently, the gene is required for (p)ppGpp accumulation upon nutritional starvation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-691
2001-03-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470691a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-691&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaeffer A. A., Zhang J., Zhang J., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Cashel M. 1994; Detection of (p)ppGpp accumulation patterns in Escherichia coli mutants. In Methods in Molecular Geneticsvol. 3Molecular Microbiology Techniques, Part A pp341–356 Edited by Adolph K. W.. New York: Academic Press;
    [Google Scholar]
  3. Cashel M., Gentry D. R., Hernandez V. J., Vinella D. others 1996; The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp1458–1496 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Choli T. 1989; Structural properties of ribosomal protein L11 from Escherichia coli . Biochem Int19:1323–1338
    [Google Scholar]
  5. Cochran J. W., Byrne R. W. 1974; Isolation and properties of a ribosome-bound factor required for ppGpp and pppGpp synthesis in Escherichia coli . J Biol Chem249:353–360
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J.. 23 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  7. Fraser C. M., Gocayne J. D., White O.. 7 other authors 1995; The minimal gene complement of Mycoplasma genitalium. Science270:397–403
    [Google Scholar]
  8. Friesen J. D., Fiil N. P., Parker J. M., Haseltine W. A. 1974; A new relaxed mutant of Escherichia coli with an altered 50S ribosomal subunit. Proc Natl Acad Sci USA71:3465–3469[CrossRef]
    [Google Scholar]
  9. Goldman E., Jakubowski H. 1990; Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol4:2035–2040[CrossRef]
    [Google Scholar]
  10. Grant S. G. N., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA87:4645–4649[CrossRef]
    [Google Scholar]
  11. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promotor sequences. Nucleic Acids Res11:2237–2255[CrossRef]
    [Google Scholar]
  12. Kawamoto S., Zhang D., Ochi K. 1997; Molecular analysis of the ribosomal L11 protein gene ( rplK = relC ) of Streptomyces griseus and identification of a deletion allele. Mol Gen Genet255:549–560[CrossRef]
    [Google Scholar]
  13. Kunst F., Ogasawara N., Moszer I.. 31 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature390:249–256[CrossRef]
    [Google Scholar]
  14. Küster C.. Piepersberg W., Diestler J. 1998; Cloning and transcriptional analysis of the rplKA - or f31 - rplJL gene cluster of Streptomyces griseus . Mol Gen Genet257:219–229[CrossRef]
    [Google Scholar]
  15. Malumbres M., Martin J. F. 1996; Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow. FEMS Microbiol Lett143:103–114[CrossRef]
    [Google Scholar]
  16. Malumbres M., Gil J. A., Martin J. F. 1993; Codon preferences in corynebacteria. Gene134:15–24[CrossRef]
    [Google Scholar]
  17. Martinez-Costa O. H., Arias P., Romero N. M., Parro V., Mellado R. P., Malpartida F. 1998; The relA / spoT homologous gene from Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J Bacteriol180:4123–4132
    [Google Scholar]
  18. Mechold U., Cashel M., Steiner K., Gentry D., Malke H. 1996; Functional analysis of a relA / spoT gene homolog from Streptococcus equisimilis . J Bacteriol178:1401–1411
    [Google Scholar]
  19. Metzger S., Sarubbi E., Glaser G., Cashel M. 1989; Protein sequences encoded by the relA and spoT genes of Escherichia coli are interrelated. J Biol Chem264:9122–9125
    [Google Scholar]
  20. Murray K. D., Bremer H. 1996; Control of spoT -dependent ppGpp synthesis and degradation in Escherichia coli . J Mol Biol259:41–57[CrossRef]
    [Google Scholar]
  21. Myers E. W., Miller W. 1988; Optimal alignments in linear space. Comput Appl Biosci4:11–17
    [Google Scholar]
  22. Ochi K. 1990; Streptomyces relC mutants with an altered ribosomal protein ST-11 and genetic analysis of a Streptomyces griseus relC mutant. J Bacteriol172:4008–4016
    [Google Scholar]
  23. Ochi K., Zhang D., Kawamoto S., Hesketh A. 1997; Molecular and functional analysis of the ribosomal L11 and S12 protein genes ( rplK and rpsL ) of Streptomyces coelicolor A3(2. Mol Gen Genet256:488–498
    [Google Scholar]
  24. Patek M., Eikmanns B. J., Patek J., Sahm H. 1995; Promotors from Corynebacterium glutamicum : cloning, molecular analysis and search for a consensus motif. Microbiology142:1297–1309
    [Google Scholar]
  25. Puttikhunt C., Nihira T., Yamada Y. 1995; Cloning, nucleotide sequence, and transcriptional analysis of the nusG gene of Streptomyces coelicolor A3(2), which encodes a putative transcriptional antiterminator. Mol Gen Genet247:118–122[CrossRef]
    [Google Scholar]
  26. Rost B., Casadio R., Fariselli P., Sander C. 1995; Prediction of helical transmembrane segments at 95% accuracy. Protein Sci4:521–533
    [Google Scholar]
  27. Ruklisha M., Viesturs U., Labane L. 1995; Growth control and ppGpp synthesis in Brevibacterium flavum cells at various medium mixing rates and aeration intensities. Acta Biotechnol15:41–48[CrossRef]
    [Google Scholar]
  28. Ryals J., Little R., Bremer H. 1982; Control of rRNA and tRNA synthesis in Escherichia coli by guanosine tetraphosphate. J Bacteriol151:1261–1268
    [Google Scholar]
  29. Ryan P. C., Lu M., Draper D. E. 1991; Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol221:1257–1268[CrossRef]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schäfer A.. Kalinowski J., Simon R., Seep-Feldhaus A.-H., Pühler A. 1990; High-frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol172:1663–1666
    [Google Scholar]
  32. Schäfer A., Schwarzer A., Kalinowski J., Pühler A. 1994a; Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC13032 and analysis of its role in intergenic conjugation with Escherichia coli . J Bacteriol176:7309–7319
    [Google Scholar]
  33. Schäfer A., Tauch A., Jäger W.. Kalinowski J., Thierbach G., Pühler A. 1994b; Small mobilizable multi-purpose cloning vectors derived from Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73[CrossRef]
    [Google Scholar]
  34. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology1:784–794[CrossRef]
    [Google Scholar]
  35. Smith I., Paress P., Cabane K., Dubnau E. 1980; Genetics and physiology of the rel system of Bacillus subtilis . Mol Gen Genet178:271–279[CrossRef]
    [Google Scholar]
  36. Staden R. 1986; The current status and portability of our sequence handling software. Nucleic Acids Res14:217–232[CrossRef]
    [Google Scholar]
  37. Stark M., Cundliffe E. 1979; Requirement for ribosomal protein BM-L11 in stringent control of RNA synthesis in Bacillus megaterium . Eur J Biochem102:101–105[CrossRef]
    [Google Scholar]
  38. Tauch A. 1996; Entwicklung von Transposonmutagenesesystemen für Aminosäure-produzierende Corynebakterien PhD thesis University of Bielefeld;
    [Google Scholar]
  39. Tauch A., Kirchner O., Wehmeier L., Kalinowski J., Pühler A. 1994; Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli . FEMS Microbiol Lett123:343–347[CrossRef]
    [Google Scholar]
  40. Tauch A., Kassing F., Kalinowski J., Pühler A. 1995; The Corynebacterium xerosis composite transposon Tn 5432 consists of two identical insertion sequences, designated IS 1249 , flanking the erythromycin resistance geneermCX. Plasmid34:119–131[CrossRef]
    [Google Scholar]
  41. Tomb J. F., White O., Kerlavage A. R.. 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388:539–547
    [Google Scholar]
  42. Wehmeier L., Mechold U., Malke H., Kalinowski J, Schäfer A., Burkovski A., Krämer R., Pühler A.. 1998; The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism. Microbiology144:1853–1862[CrossRef]
    [Google Scholar]
  43. Xiao H., Kalman M., Ikehara K., Zemel Z., Glaser G., Cashel M. 1991; Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem266:5980–5990
    [Google Scholar]
  44. Xing Y., Draper D. E. 1996; Cooperative interaction of RNA and thiostrepton antibiotic with two domains of ribosomal protein L11. Biochemistry35:1581–1588[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-691
Loading
/content/journal/micro/10.1099/00221287-147-3-691
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error