1887

Abstract

The role of the phosphoenolpyruvate:mannose phosphotransferase system (mannose PTS) in sugar transport and control of sugar utilization was investigated. Growth experiments and measurements of PEP-dependent phosphorylation of sugars, of sugar transport and of catabolic enzyme activity were performed, to compare a wild-type strain with an EIIB mutant, LPE6, and a mutant, LPE4. Fructose uptake in wild-type bacteria demonstrated the presence of two fructose-specific PTSs: a high-affinity system, EII ( =52 μM) which is inducible by fructose, and a low-affinity system ( =300 μM). The latter system was lacking in LPE6 and therefore corresponds to EII. LPE6 was unable to phosphorylate glucose, mannose, -acetylglucosamine and 2-deoxyglucose in a PEP-dependent reaction, indicating that these sugars are substrates of EII. Transport and phosphorylation of these compounds was the same in LPE4 and in wild-type bacteria, although growth of LPE4 on these sugars was impaired. In wild-type bacteria and in LPE4 the activity of EII was lowered by the presence of EII substrates in the growth medium, but this decrease was not observed in LPE6. These results indicate that EII but not CcpA regulates the synthesis of EII. Mutations in EII or CcpA resulted in a relief of catabolite repression exerted by EII substrates on the activity of β-galactosidase and β-glucosidase, indicating that EII and CcpA are important components in catabolite repression in . Fructose-mediated repression of these two enzymes appeared to be correlated with the activity of EII.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-671
2001-03-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470671a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-671&mimeType=html&fmt=ahah

References

  1. Abe, K. & Uchiba, K. ( 1989; ). Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotranferase system in Pediococcus halophilus. J Bacteriol 171, 1793-1800.
    [Google Scholar]
  2. Bourassa, S. & Vadeboncoeur, C. ( 1992; ). Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass of IIIman, a component of the phosphoenolpyruvate:mannose phosphotransferase system. J Gen Microbiol 138, 769-777.[CrossRef]
    [Google Scholar]
  3. Bourassa, S., Gauthier, L., Giguère, R. & Vadeboncoeur, C. ( 1990; ). A IIIMan protein is involved in the transport of glucose, mannose and fructose by oral streptococci. Oral Microbiol Immunol 5, 288-297.
    [Google Scholar]
  4. Chaillou, S., Lokman, B. C., Leer, R. J., Posthuma, C., Postma, P. W. & Pouwels, P. H. ( 1998; ). Cloning, sequence analysis and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus. J Bacteriol 180, 2312-2320.
    [Google Scholar]
  5. Chaillou, S., Pouwels, P. H. & Postma, P. W. ( 1999; ). Transport of d-xylose in Lactobacillus pentosus, Lactobacillus casei and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system. J Bacteriol 181, 4768-4773.
    [Google Scholar]
  6. Chen, Y. Y., Hall, T. H. & Burne, R. A. ( 1998; ). Streptococcus salivarius urease expression: involvement of the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiol Lett 165, 117-122.[CrossRef]
    [Google Scholar]
  7. Deutscher, J. & Saier, M. H.Jr ( 1983; ). ATP-dependent, protein kinase-catalysed phosphorylation of a seryl residue in HPr, the phosphoryl carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci USA 80, 6790-6794.[CrossRef]
    [Google Scholar]
  8. Deutscher, J., Küster, E., Bergstedt, U., Charrier, V. & Hillen, W. ( 1995; ). Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 15, 1049-1053.[CrossRef]
    [Google Scholar]
  9. Erni, B., Zanolari, B. & Kocher, H. P. ( 1987; ). The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262, 5238-5247.
    [Google Scholar]
  10. Faires, N., Tobisch, S., Bachem, S., Martin-Verstraete, I., Hecker, M. & Stülke, J. ( 1999; ). The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J Mol Microbiol Biotechnol 1, 141-148.
    [Google Scholar]
  11. Fujita, Y., Miwa, Y., Galinier, A. & Deutscher, J. ( 1995; ). Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17, 953-960.[CrossRef]
    [Google Scholar]
  12. Galinier, A., Kravanja, M., Engelmann, R., Hengsterberg, W., Kilhoffer, M.-C., Deutscher, J. & Haiech, J. ( 1998; ). New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 95, 1823-1828.[CrossRef]
    [Google Scholar]
  13. Gauthier, L., Bourassa, S., Brochu, D. & Vadeboncoeur, C. ( 1990; ). Control of sugar utilization in oral streptococci. Properties of phenotypically distinct 2-deoxyglucose-resistant mutants of Streptococcus salivarius. Oral Microbiol Immunol 5, 352-359.[CrossRef]
    [Google Scholar]
  14. Gonzy-Tréboul, G., de Waard, J. H., Zagorec, M. & Postma, P. W. ( 1991; ). The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains. Mol Microbiol 5, 1241-1249.[CrossRef]
    [Google Scholar]
  15. Gosalbes, M. J., Monedero, V., Alpert, C. A. & Pérez-Martı́nez, G. ( 1997; ). Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148, 83-89.[CrossRef]
    [Google Scholar]
  16. Jones, B. E., Dossonet, V., Küster, E., Hillen, W., Deutscher, J. & Klevit, R. E. ( 1997; ). Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272, 26530-26535.[CrossRef]
    [Google Scholar]
  17. Lapointe, R., Frenette, M. & Vadeboncoeur, C. ( 1993; ). Altered expression of several genes in -defective mutants of Streptococcus salivarius demonstrated by two-dimensional gel electrophoresis of cytoplasmic proteins. Res Microbiol 144, 305-316.[CrossRef]
    [Google Scholar]
  18. Lauret, R., Morel-Deville, F., Berthier, F., Champonier-Verges, M., Postma, P. W., Ehrlich, S. D. & Zagorec, M. ( 1996; ). Carbohydrate utilization in Lactobacillus sake. Appl Environ Microbiol 62, 1922-1927.
    [Google Scholar]
  19. Ledesma, O. V., De Ruiz, A. P., Oliver, G., De Siori, G. S., Raibaud, P. & Galpin, J. V. ( 1977; ). A synthetic medium for comparative nutritional studies of lactobacilli. J Appl Bacteriol 42, 123-133.[CrossRef]
    [Google Scholar]
  20. Lokman, B. C., van Santen, P., Verdoes, J. C., Krüse, J., Leer, R. J., Posno, M. & Pouwels, P. H. ( 1991; ). Organization and characterization of the three genes involved in d-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 230, 161-169.[CrossRef]
    [Google Scholar]
  21. Lokman, B. C., Heerikhuisen, M., Leer, R. J., van den Broek, A., Borsboom, Y., Chaillou, S., Postma, P. & Pouwels, P. H. ( 1997; ). Regulation of expression of the Lactobacillus pentosus xylAB-operon. J Bacteriol 179, 5391-5397.
    [Google Scholar]
  22. Lortie, L.-A., Pelletier, M., Vadeboncoeur, C. & Frenette, M. ( 2000; ). The gene encoding in Streptococcus salivarius is part of a tetracistronic operon encoding a phosphoenolpyruvate:mannose/glucose phosphotransferase system. Microbiology 146, 677-685.
    [Google Scholar]
  23. Martin-Verstraete, I., Débarbouillé, M., Klier, A. & Rapoport, G. ( 1990; ). Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214, 657-671.[CrossRef]
    [Google Scholar]
  24. Postma, P. ( 1977; ). Galactose transport in Salmonella typhimurium. J Bacteriol 129, 630-639.
    [Google Scholar]
  25. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594.
    [Google Scholar]
  26. Reizer, J., Novotny, M. J., Hengstenberg, W. & Saier, M. H.Jr ( 1984; ). Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl-residue in HPr, a phosphocarrier protein of the phosphotransferase system. J Bacteriol 160, 333-340.
    [Google Scholar]
  27. Reizer, J., Hoischen, C., Titgemeyer, F., Rivolta, C., Rabus, R., Stülke, J., Karamat, D., Saier, M. H.Jr & Hillen, W. ( 1998; ). A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 27, 1157-1169.[CrossRef]
    [Google Scholar]
  28. Stülke, J. & Hillen, W. ( 1999; ). Carbon catabolite repression in bacteria. Curr Opin Microbiol 2, 195-201.[CrossRef]
    [Google Scholar]
  29. Thompson, J. & Chassy, B. M. ( 1985; ). Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate:mannose phosphotransferase system in Streptococcus lactis. J Bacteriol 162, 224-234.
    [Google Scholar]
  30. Vadeboncoeur, C. & Gauthier, L. ( 1987; ). The phosphoenolpyruvate:sugar phosphotransferase system of Streptococcus salivarius: identification of IIIMan protein. Can J Microbiol 33, 118-122.[CrossRef]
    [Google Scholar]
  31. Vadeboncoeur, C. & Pelletier, M. ( 1997; ). The phosphoenolpyruvate phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19, 187-207.[CrossRef]
    [Google Scholar]
  32. Veyrat, A., Monedero, V. & Pérez-Martinez, G. ( 1994; ). Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140, 1141-1149.[CrossRef]
    [Google Scholar]
  33. Veyrat, A., Gosalbes, M. J. & Pérez-Martinez, G. ( 1996; ). Lactobacillus curvatus has a glucose transport system homologous to the mannose family of phosphoenolpyruvate-dependent phosphotransferase systems. Microbiology 142, 3469-3477.[CrossRef]
    [Google Scholar]
  34. Wehmeier, U. F., Wöhrl, B. M. & Lengeler, J. W. ( 1995; ). Molecular analysis of the phosphoenolpyruvate-dependent l-sorbose phosphotransferase system for Klebsiella pneumoniae and of its multidomain structure. Mol Gen Genet 246, 610-618.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-671
Loading
/content/journal/micro/10.1099/00221287-147-3-671
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error