1887

Abstract

Carbohydrate-binding modules (CBMs) are often part of the complex hydrolytic extracellular enzymes from bacteria and may modulate their catalytic activity. The thermostable catalytic domain of laminarinase Lam16A from (glycosyl hydrolase family 16) is flanked by two CBMs, 148 and 161 aa long. They share a sequence identity of 30%, are homologous to family CBM4 and are thus called CBM4-1 and CBM4-2 respectively. Recombinant Lam16A proteins deleted for one or both binding modules and the isolated module CBM4-1 were characterized. Proteins containing the N-terminal module CBM4-1 bound to the soluble polysaccharides laminarin (1,3-β-glucan) and barley 1,3/1,4-β-glucan, and proteins containing the C-terminal module CBM4-2 bound additionally to curdlan (1,3-β-glucan) and pustulan (1,6-β-glucan), and to insoluble yeast cell wall β-glucan. The activity of the catalytic domain on soluble 1,3-β-glucans was stimulated by the presence of CBM4-1, whereas the presence of CBM4-2 enhanced the Lam16A activity towards gelatinized and insoluble or mixed-linkage 1,3-β-glucan. Thermostability of the catalytic domain was not affected by the truncations. Members of family CBM4 can be divided into four subfamilies, members of which show different polysaccharide-binding specificities corresponding to the catalytic specificities of the associated hydrolytic domains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-621
2001-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470621a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-621&mimeType=html&fmt=ahah

References

  1. Abou Hachem M., Nordberg Karlsson E., Bartonek-Roxa E., Raghothama S., Simpson P. J., Gilbert H. J., Williamson M. P., Holst O. 2000; Carbohydrate-binding modules from the thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345:53–60 [CrossRef]
    [Google Scholar]
  2. Aida K., Okada T., Kasahara N., Nikaidou N., Tanaka H., Watanabe T. 1995; Comparative studies of β-1,3-glucanase A1 and B of Bacillus circulans WL-12: purifications and enzymatic properties. J Ferment Bioeng 80:283–286 [CrossRef]
    [Google Scholar]
  3. Bacon J. S. D, Farmer V. C., Jones D., Taylor I. F. 1969; The glucan components of the cell wall of baker’s yeast ( Saccharomyces cerevisiae ) considered in relation to its ultrastructure. Biochem J 114:557–567
    [Google Scholar]
  4. Bayer E. A., Chanzy H., Lamed R., Shoham Y. 1998; Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557 [CrossRef]
    [Google Scholar]
  5. Black G. W., Rixon J. E., Clarke J. H., Hazlewood G. P., Ferreira L. M. A., Bolam D. N., Gilbert H. J. 1996; Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol 57:59–69
    [Google Scholar]
  6. Bolam D. N., Ciruela A., McQueen-Mason S., Simpson P., Williamson M. P., Rixon J. E., Boraston A., Hazlewood G. P., Gilbert H. J. 1998; Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331:775–781
    [Google Scholar]
  7. Bronnenmeier K., Kern A., Liebl W., Staudenbauer W. L. 1995; Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61:1399–1407
    [Google Scholar]
  8. Coutinho P. M., Henrissat B. 1999; Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering pp 3–12 Edited by Gilbert H. J., Davies G., Henrissat B., Svensson B. Cambridge: Royal Society of Chemistry;
    [Google Scholar]
  9. Coutinho J. B., Gilkes N. R., Warren R. A. J., Kilburn D. G., Miller R. C. Jr 1992; The binding of Cellulomonas fimi endoglucanase C (CenC) to cellulose and sephadex is mediated by the N-terminal repeats. Mol Microbiol 6:1243–1252 [CrossRef]
    [Google Scholar]
  10. Dakhova O. N., Kurepina N. E., Zverlov V. V., Svetlichnyi V. A., Velikodvorskaya G. A. 1993; Cloning and expression in Escherichia coli of Thermotoga neapolitana genes coding for enzymes of carbohydrate substrate degradation. Biochem Biophys Res Commun 194:1359–1364 [CrossRef]
    [Google Scholar]
  11. Gill J., Rixon J. E., Bolam D. N., McQueen-Mason S., Simpson P. J., Williamson M. P., Hazlewood G. P., Gilbert H. J. 1999; The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem J 342:473–480 [CrossRef]
    [Google Scholar]
  12. Harada T. 1992; The story of research into curdlan and the bacteria producing it. Trends Glycosci Glycotech 4:309–317 [CrossRef]
    [Google Scholar]
  13. Henrissat B., Teeri T. T., Warren R. A. J. 1998; A scheme for designating enzymes that hydrolyse the polysaccharides in the cell wall of plants. FEBS Lett 425:352–354 [CrossRef]
    [Google Scholar]
  14. Huber R., Stetter K. O. 1992; The order Thermotogales . In The Prokaryotes pp 3809–3815 Edited by Balows A., Dworkin M., Harder W., Schleifer K.-H., Trüper H. G. New York: Springer;
    [Google Scholar]
  15. Irwin D., Shin D.-H., Zhang S., Barr B. K., Sakon J., Karplus P. A., Wilson D. B. 1998; Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714
    [Google Scholar]
  16. Jiang G., Vasanthan T. 2000; MALDI-MS and HPLC quantification of oligosaccharides of lichenase-hydrolyzed water-soluble β-glucan from ten barley varieties. J Agric Food Chem 48:3305–3310 [CrossRef]
    [Google Scholar]
  17. Johnson P. E., Joshi M. D., Tomme P., Kilburn D. G., McIntosh L. P. 1996; Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry 35:14381–14394 [CrossRef]
    [Google Scholar]
  18. Johnson P. E., Creagh A. L., Brun E., Joe K., Tomme P., Haynes C. A., McIntosh L. P. 1998; Calcium binding by the N-terminal cellulose-binding domain from Cellulomonas fimi β-1,4-glucanase CenC. Biochemistry 37:12772–12781 [CrossRef]
    [Google Scholar]
  19. Kanzawa Y., Kurasawa T., Kanegae Y., Harada A., Harada T. 1994; Purification and properties of a new exo-(1→3)-β-d-glucanase from Bacillus circulans YK9 capable of hydrolyzing resistant curdlan with formation of only laminaribiose. Microbiology 140:637–642 [CrossRef]
    [Google Scholar]
  20. Kim Y.-T., Kim E.-H., Cheong C., Williams D. L., Kim C.-W., Lim S.-T. 2000; Structural characterization of β-d-(1→3, 1→6)-linked glucans using NMR spectroscopy. Carbohydr Res 328:331–341 [CrossRef]
    [Google Scholar]
  21. Krah M., Misselwitz R., Politz O., Thomsen K. K., Welfle H., Borriss R. 1998; The laminarinase from thermophilic eubacterium Rhodothermus marinus : conformation, stability and identification of active site carboxylic residues by site-directed mutagenesis. Eur J Biochem 257:101–111 [CrossRef]
    [Google Scholar]
  22. Kulicke W. M., Lettau A. I., Thielking H. 1997; Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-β-d-glucans. Carbohydr Res 297:135–143 [CrossRef]
    [Google Scholar]
  23. Linder M., Teeri T. T. 1997; The roles and function of cellulose-binding domains. J Biotechnol 57:15–28 [CrossRef]
    [Google Scholar]
  24. Meissner K., Wassenberg D., Liebl W. 2000; The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage β-1,3/β-1,4-glucan. Mol Microbiol 36:898–912 [CrossRef]
    [Google Scholar]
  25. Nogi Y., Horikoshi K. 1990; A thermostable alkaline β-1,3-glucanase produced by alkalophilic Bacillus sp. AG-430. Appl Microbiol Biotechnol 32:704–707 [CrossRef]
    [Google Scholar]
  26. Schwarz W. H., Schimming S., Staudenbauer W. L. 1988; Isolation of a Clostridium thermocellum gene encoding a thermostable β-1,3-glucanase (laminarinase). Biotechnol Lett 10:225–230 [CrossRef]
    [Google Scholar]
  27. Sunna A., Gibbs M. D., Bergquist P. L. 2000; The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochem J 346:583–586 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Tomme P., Warren R. A. J., Gilkes N. R. 1995; Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81
    [Google Scholar]
  30. Tomme P., Creagh A. L., Kilburn D. G., Haynes C. A. 1996; Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. I. Binding specificity and calorimetric analysis. Biochemistry 35:13885–13894 [CrossRef]
    [Google Scholar]
  31. Tomme P., Boraston A., McLean B. 7 other authors 1998; Characterization and affinity applications of cellulose-binding domains. J Chromatogr B715:283–296
    [Google Scholar]
  32. Wood T. M., Bhat K. M. 1988; Methods for measuring cellulase activities. Methods Enzymol 160:87–112
    [Google Scholar]
  33. Zverlov V. V., Volkov I. Y., Velikodvorskaya T. V., Schwarz W. H. 1997; Highly thermostable endo-1,3-β-glucanase (laminarinase) LamA from Thermotoga neapolitana : nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology 143:1701–1708 [CrossRef]
    [Google Scholar]
  34. Zverlov V. V., Volkov I. Y., Lunina N. A., Velikodvorskaya G. A. 1999; Enzymes of thermophilic anaerobic bacteria hydrolyzing cellulose, xylan, and other beta-glucans. Mol Biol 33:89–95
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-621
Loading
/content/journal/micro/10.1099/00221287-147-3-621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error