1887

Abstract

Dichloromethane dehalogenase/glutathione transferase allows methylotrophic bacteria to grow with dichloromethane (DCM), a predominantly man-made compound. Bacteria growing with DCM by virtue of this enzyme have been readily isolated in the past. So far, the sequence of the gene encoding DCM dehalogenase has been determined for DM4 and sp. DM11. DCM dehalogenase genes closely related to that of strain DM4 were amplified by PCR and cloned from total DNA from 14 different DCM-degrading strains, enrichment cultures and sludge samples from wastewater treatment plants. In total, eight different sequences encoding seven different protein sequences were obtained. Sequences of different origin were identical in several instances. Sequence variation was limited to base substitutions; strikingly, 16 of the 19 substitutions in the gene itself encoded amino acids that were different from those of the DM4 sequence. The kinetic parameters and , the pH optimum and the stability of representative DCM dehalogenase variants were investigated, revealing minor differences between the properties of DCM dehalogenases related to that from strain DM4.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-611
2001-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470611a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-611&mimeType=html&fmt=ahah

References

  1. van Agteren M. H.. Keuning S., Janssen D. B. 1998; In Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds , chapter 3 pp79–91 Dordrecht: Kluwer;
    [Google Scholar]
  2. Akashi H., Eyre-Walker A. 1998; Translational selection and molecular evolution. Curr Opin Genet Dev8:688–693[CrossRef]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987–2000; Current Protocols in Molecular Biology New York: Wiley-Interscience;
    [Google Scholar]
  4. Bader R., Leisinger T. 1994; Isolation and characterization of the Methylophilus sp. strain DM11 gene encoding dichloromethane dehalogenase/glutathione S -transferase. J Bacteriol176:3466–3473
    [Google Scholar]
  5. Berthelet M., Whyte L. G., Greer C. W. 1996; Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpolypyrrolidone spin columns. FEMS Microbiol Lett138:17–22[CrossRef]
    [Google Scholar]
  6. De Souza M. L., Seffernick J., Martinez B., Sadowsky M. J., Wackett L. P. 1998; The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol180:1951–1954
    [Google Scholar]
  7. Doronina N. V., Braus-Stromeyer S. A., Leisinger T., Trotsenko Y. A. 1995; Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans , gen. nov., sp. nov. Syst Appl Microbiol 18:92–98[CrossRef]
    [Google Scholar]
  8. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetzov B. B., Leisinger T. 2000; Methylophila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol23:210–218[CrossRef]
    [Google Scholar]
  9. Eulberg D., Kourbatova E. M., Golovleva L. A., Schlömann M. 1998; Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence. J Bacteriol180:1082–1094
    [Google Scholar]
  10. Felsenstein J. 1993; phylip (phylogeny inference package) version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  11. Fersht A. R. 1999; Structure and Mechanism in Protein Science New York: W. H. Freeman;
    [Google Scholar]
  12. Gillespie J. H. 1991; The Causes of Molecular Evolution Oxford: Oxford University Press;
    [Google Scholar]
  13. Gisi D., Willi L., Traber H., Leisinger T., Vuilleumier S. 1998; Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane. Appl Environ Microbiol64:1194–1202
    [Google Scholar]
  14. Goodwin K. D., Schaefer J. K., Oremland R. S. 1998; Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures. Appl Environ Microbiol64:4629–4636
    [Google Scholar]
  15. Green T. 1997; Methylene chloride induced mouse liver and lung tumours: an overview of the role of mechanistic studies in human safety assessment. Hum Exp Toxicol16:3–13[CrossRef]
    [Google Scholar]
  16. Hill K. E., Marchesi J. R., Weightman A. J. 1999; Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. J Bacteriol181:2535–2547
    [Google Scholar]
  17. Holben W. E., Jansson J. K., Chelm B. K., Tiedje J. M. 1988; DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol54:703–711
    [Google Scholar]
  18. Janssen D. B., Oldenhuis R, van den Wijngaard A. J., van der Waarde J. J.. 1991; Biochemistry and kinetics of aerobic degradation of chlorinated aliphatic hydrocarbons. In On-site Bioreclamation pp92–112 Edited by Hinchee R. E., Olfenbuttel R. F.. Boston, MA: Butterworth-Heinemann;
    [Google Scholar]
  19. Josephy P. D. 1997; Molecular Toxicology Oxford: Oxford University Press;
    [Google Scholar]
  20. Keith L. H., Telliard W. A. 1979; Priority pollutants I – a perspective view. Environ Sci Technol13:416–423[CrossRef]
    [Google Scholar]
  21. Kohler-Staub D., Leisinger T. 1985; Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J Bacteriol162:676–681
    [Google Scholar]
  22. Kohler-Staub D., Hartmans S., Suter F., Leisinger T, Gälli R.. 1986; Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J Gen Microbiol132:2837–2844
    [Google Scholar]
  23. La Roche S. D., Leisinger T. 1990; Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S -transferase supergene family. J Bacteriol172:164–171
    [Google Scholar]
  24. Lewontin R. C. 1989; Inferring the number of evolutionary events from DNA coding sequence differences. Mol Biol Evol6:15–32
    [Google Scholar]
  25. Mckay D., Shiu W. Y., Ma K. C. 1993; In Volatile Organic Chemicals vol. 3 pp400–406 Boca Raton, FL: Lewis;
    [Google Scholar]
  26. Myazaki K., Arnold F. H. 1999; Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol49:716–720[CrossRef]
    [Google Scholar]
  27. Newman J., Peat T. S., Richard R., Kan L., Swanson P. E., Affholter J. A., Holmes I. H., Schindler J. F., Unkefer C. J., Terwilliger T. C. 1999; Haloalkane dehalogenases: structure of a Rhodococcus enzyme. Biochemistry38:16105–16114[CrossRef]
    [Google Scholar]
  28. Ottengraf S. P. P., Meesters J. J. P., Rozema H. R, van den Oever A. H. C.. 1986; Biological elimination of volatile xenobiotic compounds in biofilters. Bioprocess Eng1:61–69[CrossRef]
    [Google Scholar]
  29. Perrière G.. Gouy M. 1996; WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie78:364–369[CrossRef]
    [Google Scholar]
  30. Poelarends G. J., Kulakov L. A., Larkin M. J., Vlieg J., Janssen D. B. 2000; Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways. J Bacteriol182:2191–2199[CrossRef]
    [Google Scholar]
  31. Pohl T. M., Maier E. 1995; Sequencing 500 kb of yeast DNA using a GATC 1500 direct blotting electrophoresis system. Biotechniques19:482–486
    [Google Scholar]
  32. Pries F., Bos R., Pentenga M., Janssen D. B, van der Wijngaard A. J.. 1994; The role of spontaneous cap domain mutations in haloalkane dehalogenase specifity and evolution. J Biol Chem26:17490–17494
    [Google Scholar]
  33. Rozen S., Skaletsky H. J. 1998; Primer3. Code available athttp://www-genome.wi.mit.edu/genome-software/other/primer3.html
  34. Schmid-Appert M., Zoller K., Traber H., Vuilleumier S., Leisinger T. 1997; Association of newly discovered IS elements with the dichloromethane utilization genes of methylotrophic bacteria. Microbiology143:2557–2567[CrossRef]
    [Google Scholar]
  35. Scholtz R., Wackett L. P., Egli C., Cook A. M., Leisinger T. 1988; Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J Bacteriol170:5698–5704
    [Google Scholar]
  36. Stucki G., Ebersold H. R., Leisinger T, Gälli R.. 1981; Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch Microbiol130:366–371[CrossRef]
    [Google Scholar]
  37. Sutherland J. D. 2000; Evolutionary optimisation of enzymes. Curr Opin Chem Biol4:263–269[CrossRef]
    [Google Scholar]
  38. Vuilleumier S. 1997; Bacterial glutathione S-transferases: what are they good for?. J Bacteriol179:1431–1441
    [Google Scholar]
  39. Vuilleumier S. 2001; Coping with a halogenated one-carbon diet: aerobic dichloromethane-mineralising bacteria. In Biotechnology for the Environment, Focus on Biotechnology Series vol. 3 Edited by Hofman M., Agathos S.. Dordrecht: Kluwer; in press
    [Google Scholar]
  40. Vuilleumier S., Leisinger T. 1996; Protein engineering studies of dichloromethane dehalogenase/glutathione S -transferase from Methylophilus sp. strain DM11. Ser12 but not Tyr6 is required for enzyme activity. Eur J Biochem239:410–417[CrossRef]
    [Google Scholar]
  41. Vuilleumier S., Sorribas H., Leisinger T. 1997; Identification of a novel determinant of glutathione affinity in dichloromethane dehalogenase/glutathione S-transferases. Biochem Biophys Res Commun238:452–456[CrossRef]
    [Google Scholar]
  42. van den Wijngaard A. J., van der Kamp K. W. H. J., van der Ploeg J.. Pries F., Kazemier B., Janssen D. B. 1992; Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl Environ Microbiol58:976–983
    [Google Scholar]
  43. Zuber L. 1995; Trickling filter and three-phase airlift bioreactor for the removal of dichloromethane from air PhD thesis ETH Zürich; Switzerland:
    [Google Scholar]
  44. Zuber L., Dunn I. J., Deshusses M. A. 1997; Comparative scale-up and cost estimation of a biological trickling filter and a three-phase airlift bioreactor for the removal of methylene chloride from polluted air. J Air Waste Manag Assoc47:969–975[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-611
Loading
/content/journal/micro/10.1099/00221287-147-3-611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error