1887

Abstract

The evolutionary history of the GDP-mannose pathway in was studied via sequencing and genes from 13 representative strains for O antigens containing mannose and/or sugar derivatives of GDP-D-mannose. In addition, colanic acid (CA) and genes were sequenced from selected strains, as the basis for a detailed comparison. Interestingly, including the eight previously characterized O antigen gene clusters, 12 of the 21 strains studied in total (each representing a different O antigen structure) possess a gene which displays DNA identity, ranging from 93 to 99%, to the CA gene of LT2. Furthermore, the CA-like genes (as well as the CA and genes) display subspecies specificity, and the CA and CA-like genes (for individual strains) appear to be evolving in concert via gene conversion events. In comparison, the genes were generally not CA-like, a situation also apparent in ,and therefore most strongly reflected the evolutionary history of the Oantigen GDP-mannose pathway. It appears that, in relatively recent times, gene capture from a distant source has occurred infrequently, and that groups of and genes have been maintained and are continuing to evolve within and more closely related species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-599
2001-03-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470599a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-599&mimeType=html&fmt=ahah

References

  1. Abdulkarim F., Hughes D. 1996; Homologous recombination between the tuf genes of Salmonella typhimurium . J Mol Biol 260:506–522 [CrossRef]
    [Google Scholar]
  2. Aoyama K. M., Haase A. M., Reeves P. R. 1994; Evidence for effect of random genetic drift on G+C content after lateral transfer of fucose pathway genes to Escherichia coli K-12. Mol Biol Evol 11:829–838
    [Google Scholar]
  3. Bastin D. A., Romana L. K., Reeves P. R. 1991; Molecular cloning and expression in Escherichia coli K-12 of the rfb gene cluster determining the O antigen of an E. coli O111 strain. Mol Microbiol 5:2223–2231 [CrossRef]
    [Google Scholar]
  4. Boyd E. F., Nelson K., Wang F.-S., Whittam T. S., Selander R. K. 1994; Molecular genetic basis of allelic polymorphism in malate dehydrogenase ( mdh ) in natural populations of Escherichia coli and Salmonella enterica . Proc Natl Acad Sci USA 91:1280–1284 [CrossRef]
    [Google Scholar]
  5. Brown P. K., Romana L. K., Reeves P. R. 1992; Molecular analysis of the rfb gene cluster of Salmonella serovar Muenchen (strain M67): genetic basis of the polymorphism between groups C2 and B. Mol Microbiol 6:1385–1394 [CrossRef]
    [Google Scholar]
  6. Curd H., Liu D., Reeves P. R. 1998; Relationships among the O-antigen gene clusters of Salmonella enterica groups B, D1, D2, and D3. J Bacteriol 180:1002–1007
    [Google Scholar]
  7. Ewing B., Green P. 1998; Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194
    [Google Scholar]
  8. Ewing B., Hillier L., Wendl M. C., Green P. 1998; Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip, version 3.5 University of Washington; Seattle, USA:
    [Google Scholar]
  10. Feng D., Doolittle R. F. 1986; Progressive sequence alignment as a prerequisite to correct phylogenetics trees. J Mol Evol 25:351–360
    [Google Scholar]
  11. Frick D. N., Townsend B. D., Bessman M. J. 1995; A novel GDP-mannose mannosyl hydrolase shares homology with the MutT family of enzymes. J Biol Chem 270:24086–24091 [CrossRef]
    [Google Scholar]
  12. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202 [CrossRef]
    [Google Scholar]
  13. Jayaratne P., Bronner D., MacLachlan P. R., Dodgson C., Kido N., Whitfield C. 1994; Cloning and analysis of duplicated rfbM and rfbK genes involved in the formation of GDP-mannose in Escherichia coli O9: K30 and participation of rfb genes in the synthesis of the group I K30 capsular polysaccharide. J Bacteriol 176:3126–3139
    [Google Scholar]
  14. Jiang X. M., Neal B., Santiago F., Lee S. J., Romana L. K., Reeves P. R. 1991; Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol 5:695–713 [CrossRef]
    [Google Scholar]
  15. Kido N., Torgov V. I., Sugiyama T., Uchiya K., Sugihara H., Komatsu T., Kato N., Jann K. 1995; Expression of the O9 polysaccharide of Escherichia coli : sequencing of the E. coli O9 rfb gene cluster, characterization of mannosyl transferases, and evidence for an ATP-binding cassette transport system. J Bacteriol 177:2178–2187
    [Google Scholar]
  16. Lai V., Wang L., Reeves P. R. 1998; Escherichia coli clone sonnei ( Shigella sonnei ) had a chromosomal O antigen gene cluster prior to gaining its current plasmid-borne O antigen genes. J Bacteriol 180:2983–2986
    [Google Scholar]
  17. Lee S. J., Romana L. K., Reeves P. R. 1992; Sequence and structural analysis of the rfb (O antigen) gene cluster from a group C1 Salmonella enterica strain. J Gen Microbiol 138:1843–1855 [CrossRef]
    [Google Scholar]
  18. Le Minor L., Veron M., Popoff M. 1982; Taxonomie des Salmonella. Ann Microbiol (Inst Pasteur) 133B:223–243
    [Google Scholar]
  19. Le Minor L., Popoff M. Y., Laurent B., Hermant D. 1986; Individualisation D’une septieme sous-espece de Salmonella : S.choleraesuis subsp. indica subsp. nov. Ann Inst Pasteur/Microbiol 137B:211–217 [CrossRef]
    [Google Scholar]
  20. Liu D., Verma N. K., Romana L. K., Reeves P. R. 1991; Relationships among the rfb regions of Salmonella serovars A, B, and D. J Bacteriol 173:4814–4819
    [Google Scholar]
  21. Luderitz O., Staub A. M., Westphal O. 1966; Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae . Bacteriol Rev 30:192–255
    [Google Scholar]
  22. Marolda C. L., Valvano M. A. 1993; Identification, expression, and DNA sequence of the GDP-mannose biosynthesis genes encoded by the O7 rfb gene cluster of strain VW187 ( Escherichia coli O7: K1. J Bacteriol 175:148–158
    [Google Scholar]
  23. Neidhardt F. C., Ingraham J. L., Magasanik B., Schaechter M., Umbarger H. E. 1987 Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Neidhardt F. C., Ingraham J. L. 7 other authors Curtiss R. III 1996 Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Nelson K., Whittam T. S., Selander R. K. 1991; Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene ( gapA ) in natural populations of Salmonella and Escherichia coli . Proc Natl Acad Sci USA 88:6667–6671 [CrossRef]
    [Google Scholar]
  26. Popoff M. Y., Minor L. L. 1997 Antigenic Formulas of the Salmonella Serovars, 7th revision. Paris: WHO Collaborating Centre for Reference and Research on Salmonella. Institut Pasteur;
    [Google Scholar]
  27. Reeves M. W., Evins G. M., Heiba A. A., Plikaytis B. D., Farmer J. J. III (1989; Clonal nature of Salmonella typhi and its genetic relatedness to other Salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori . J Clin Microbiol 27:313–320
    [Google Scholar]
  28. Reeves P. 1991; The O antigen of Salmonella . Today’s Life Sci 3:30–40
    [Google Scholar]
  29. Reeves P. R. 1992; Variation in O antigens, niche specific selection and bacterial populations. FEMS Microbiol Lett 100:509–516 [CrossRef]
    [Google Scholar]
  30. Reeves P. R. 1993; Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet 9:17–22 [CrossRef]
    [Google Scholar]
  31. Reeves P. R. 1997; Specialized clones and lateral transfer in pathogens. In Ecology of Pathogenic Bacteria: Molecular and Evolutionary Aspects pp 237–254 Edited by van der Zeijst B. A. M., Hoekstra W. P. M., van Embden J. D. A., van Alphen A. J. W. Amsterdam: Elsevier;
    [Google Scholar]
  32. Reeves P. R., Farnell L., Lan R. 1994; multicomp: a program for preparing sequence data for phylogenetic analysis. Comput Appl Biosci 10:281–284
    [Google Scholar]
  33. Reisner A. H., Bucholtz C. A., Smelt J., McNeil S. 1993; Australia’s National Genomic Information Service. In Proceedings of the Twenty-Sixth Annual Hawaii International Conference on Systems Science pp 595–602
    [Google Scholar]
  34. Saiki R. K., Gelfand D. H., Stofell S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. Skurnik M., Peippo A., Ervelä E. 2000; Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Y. pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O: 1b. Mol Microbiol 37:316–330 [CrossRef]
    [Google Scholar]
  37. Stephens J. C. 1985; Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol Biol Evol 2:539–556
    [Google Scholar]
  38. Stevenson G., Lee S. J., Romana L. K., Reeves P. R. 1991; The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster. Mol Gen Genet 227:173–180
    [Google Scholar]
  39. Sueoka N. 1988; Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657 [CrossRef]
    [Google Scholar]
  40. Sueoka N. 1992; Directional mutation pressure, selective constraints, and genetic equilibria. J Mol Evol 34:95–114
    [Google Scholar]
  41. Sugiyama T., Kido N., Komatsu T., Ohta M., Jann K., Jann B., Saeki A., Kato N. 1994; Genetic analysis of Escherichia coli O9 rfb: identification and DNA sequence of phosphomannomutase and GDP-mannose pyrophosphorylase genes. Microbiology 140:59–71 [CrossRef]
    [Google Scholar]
  42. Thampapillai G., Lan R., Reeves P. R. 1994; Molecular variation at the gnd locus of 34 natural isolates of Salmonella enterica : DNA sequence: evidence for probable chi-dependent interallelic recombination. Mol Biol Evol 11:813–828
    [Google Scholar]
  43. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  44. Wang L., Reeves P. R. 1998; Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66:3545–3551
    [Google Scholar]
  45. Wang L., Romana L. K., Reeves P. R. 1992; Molecular analysis of a Salmonella enterica group E1 rfb gene cluster: O antigen and the genetic basis of the major polymorphism. Genetics 130:429–443
    [Google Scholar]
  46. Xiang S. H., Hobbs M., Reeves P. R. 1994; Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J Bacteriol 176:4357–4365
    [Google Scholar]
  47. Zhang L., Radziejewska-Lebrecht J., Krajewska-Pietrasik D., Toivanen P., Skurnik M. 1997; Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O8. Mol Microbiol 23:63–76 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-3-599
Loading
/content/journal/micro/10.1099/00221287-147-3-599
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error