1887

Abstract

(now ) is a Gram-negative soil bacterium which can produce yellow pigments. It synthesizes five enzymes that degrade glycosoaminoglycan molecules. The study of this unique bacterium has been limited by the absence of a genetic manipulation system. In this paper, the construction of a conjugation/integration plasmid system and a broad-host-range plasmid, both of which contain a functional selective marker created by placing the trimethoprim resistance gene, , under the control of the regulatory region is described. Both plasmids were introduced into by conjugation and/or electroporation, and trimethoprim resistant colonies were obtained. Fifty electroporants were obtained per microgram covalently closed circular plasmid DNA. The existence of integrated plasmid DNA was confirmed by Southern hybridization and PCR. The existence of a derivative of the broad-host-range plasmid pBBR1 in was demonstrated by plasmid digestion and Southern hybridization, and by transformation of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-581
2001-03-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470581a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-581&mimeType=html&fmt=ahah

References

  1. Antonie R., Locht C. 1992; Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol Microbiol 6:1785–1799 [CrossRef]
    [Google Scholar]
  2. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL-1 Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5:376–378
    [Google Scholar]
  3. Christensen P. 1980; Description and taxonomic status of Cytophaga heparina (Payza and Korn) comb. nov. (basionym: Flavobacterium heparinum Payza and Korn 1956 ). Int J Syst Bacteriol 30:473–475 [CrossRef]
    [Google Scholar]
  4. DeShazer D., Woods D. E. 1996; Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. BioTechniques 20:762–764
    [Google Scholar]
  5. Elizer P. H., Kovach M. E., Phillips R. W., Robertson G. T., Peterson K. M., Roop R. M. II 1995; In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Brucella species. Plasmid 33:51–57 [CrossRef]
    [Google Scholar]
  6. Frey J., Bagdasarian M. 1989; The molecular biology of IncQ plasmids. In Promiscuous Plasmids of Gram-Negative Bacteria pp 79–94 Edited by Thomas C. M. San Diego, CA: Academic Press;
    [Google Scholar]
  7. Gormley E. P., Davies J. 1991; Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis . J Bacteriol 173:6705–6708
    [Google Scholar]
  8. Gu K., Linhardt R. J., Gu K., Zimmermann J, Laliberté M. 1995; Purification, characterization and specificity of chondroitin lyases and glycuronidase from Flavobacterium heparinum . Biochem J 312:569–577
    [Google Scholar]
  9. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M.II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  10. Linhardt R. J., Galliher P. M., Cooney C. L. 1986; Review: polysaccharide lyases. Appl Biochem Biotechnol 12:135–176
    [Google Scholar]
  11. Lohse D. L., Linhardt R. J. 1992; Purification and characterization of heparin lyases from Flavobacterium heparinum . J Biol Chem 267:24347–24355
    [Google Scholar]
  12. McBride M. J., Baker S. A. 1996; Development of techniques to genetically manipulate members of the genera Cytophaga , Flavobacterium , Flexibacter and Sporocytophaga . Appl Environ Microbiol 62:3017–3022
    [Google Scholar]
  13. McBride M. J., Kempf M. J. 1996; Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae . J Bacteriol 178:583–590
    [Google Scholar]
  14. Maley J., Shoemaker N. B., Roberts I. S. 1992; The introduction of colonic- Bacteroides shuttle plasmids into Porphyromonas gingivalis : identification of a putative P. gingivalis insertion-sequence element. FEMS Microbiol Lett 93:75–82 [CrossRef]
    [Google Scholar]
  15. Meyer R. J., Shapiro J. A. 1980; Genetic organization of the broad-host-range IncP-1 plasmid R751. J Bacteriol 143:1362–1373
    [Google Scholar]
  16. Michelacci Y. M., Dietrich C. P. 1975; A comparative study between a chondroitinase B and a chondroitinase AC from Flavobacterium heparinum. Biochem J 151:121–129
    [Google Scholar]
  17. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. 1986; Specific enzymic amplification of DNA in vitro : the polymerase chain reaction. Cold Spring Harbour Symp Quant Biol 51:263–269 [CrossRef]
    [Google Scholar]
  18. Payza A. N., Korn E. D. 1956; Bacterial degradation of heparin. Nature 177:88–89 [CrossRef]
    [Google Scholar]
  19. Priefer U. B., Simon R., Puhler A. 1985; Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. J Bacteriol 163:324–330
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  22. Sasisekharan R., Bulmer M., Moremen K. W., Cooney C. L., Langer R. 1993; Cloning and expression of heparinase I gene from Flavobacterium heparinum . Proc Natl Acad Sci USA 90:3660–3664 [CrossRef]
    [Google Scholar]
  23. Scherzinger E., Bagdasarian M. M., Scholz P., Lurz R., Rucke B., Bagdasarian M. 1984; Replication of the broad-host-range plasmid RSF1010: requirement for three plasmid-encoded proteins. Proc Natl Acad Sci USA 81:654–658 [CrossRef]
    [Google Scholar]
  24. Shoemaker N. B., Getty C., Gardner J. F., Salyers A. A. 1986; Tn 4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol 165:929–936
    [Google Scholar]
  25. Shoemaker N. B., Anderson K. L., Smithson S. L., Wang G. R., Salyers A. A. 1991; Conjugal transfer of a shuttle vector from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella (Bacteroides ) ruminicola B14. Appl Environ Microbiol 57:2114–2120
    [Google Scholar]
  26. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 2:784–791
    [Google Scholar]
  27. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  28. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.: proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  29. Su H., Blain F., Musil R. A., Zimmermann J. J. F., Gu K., Bennett D. C. 1996; Isolation and expression in Escherichia coli of hepB and hepC , genes encoding the glycosaminoglycan-degrading enzymes heparinase II and heparinase III, respectively, from Flavobacterium heparinum . Appl Environ Microbiol 62:2723–2734
    [Google Scholar]
  30. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb.nov., Sphingobacterium thalpophilum comb. nov.and two genospecies of genus Sphingobacterium , and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J Gen Appl Microbiol 38:465–482 [CrossRef]
    [Google Scholar]
  31. Thomas C. M., Helinski D. R. 1989; Vegetative replication and stable inheritance of IncP plasmids. In Promiscuous Plasmids of Gram-Negative Bacteria pp 1–25 Edited by Thomas C. M. San Diego, CA: Academic Press;
    [Google Scholar]
  32. Tkalec A. L., Fink D., Blain F., Zhang-Sun G., Laliberte M., Bennett D. C., Gu K., Zimmermann J. J., Su H. 2000; Isolation and expression in Escherichia coli of cslA and cslB , genes encoding the chondroitin sulfate degrading enzymes chondroitinase AC and chondroitinase B, from Flavobacterium heparinum . Appl Environ Microbiol 66:29–35 [CrossRef]
    [Google Scholar]
  33. Vieira J., Messing J. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194 [CrossRef]
    [Google Scholar]
  34. Wang Y., Rawlings M., Gibson D. T., Labbe D., Bergeron H., Brousseau R., Lau P. C. K. 1995; Identification of a membrane protein and a truncated lysR -type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246:570–579 [CrossRef]
    [Google Scholar]
  35. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. 1985; Natural relationship between bacteroides and flavobacteria. J Bacteriol 164:230–236
    [Google Scholar]
  36. Yamagata T., Saito H., Habuchi O., Suzuki S. 1968; Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem 243:1523–1535
    [Google Scholar]
  37. Yang V. C., Linhardt R. J., Bernstein H., Cooney C. L., Langer R. 1985; Purification and characterization of heparinase from Flavobacterium heparinum . J Biol Chem 260:1849–1857
    [Google Scholar]
  38. Zimmermann J. J., Langer R., Cooney C. L. 1990; Specific plate assay for bacterial heparinase. Appl Environ Microbiol 56:3593–3594
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-3-581
Loading
/content/journal/micro/10.1099/00221287-147-3-581
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error