1887

Abstract

The amitochondriate eukaryote contains an NAD(P)H:menadione oxidoreductase (EC 1.6.99.2) (glQR) that catalyses the two-electron transfer oxidation of NAD(P)H with a quinone as acceptor. The gene encoding this protein in was expressed in . The purified recombinant protein had an NAD(P)H oxidoreductase activity, with NADPH being a more efficient electron donor than NADH. Menadione, naphthoquinone and several artificial electron acceptors served as substrate for the enzyme. glQR shows high amino acid similarity to its homologues in vertebrates and also to a series of hypothetical proteins from bacteria. Although glQR is considerably smaller than the mammalian enzymes, three-dimensional modelling shows similar arrangement of the secondary structural elements. Most amino acid residues of the mammalian enzymes that participate in substrate binding or catalysis are conserved. Conservation of these features and the similarity in substrate specificity and in susceptibility to inhibitors establish glQR as an authentic member of this protein family.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-561
2001-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470561a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-561&mimeType=html&fmt=ahah

References

  1. Adam R. D. 1991; The biology of Giardia spp. Microbiol Rev 55:706–732
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Brown D. M., Upcroft J. A., Upcroft P. 1995; Free radical detoxification in Giardia duodenalis . Mol Biochem Parasitol 72:47–56 [CrossRef]
    [Google Scholar]
  4. Brown D. M., Upcroft J. A., Upcroft P. 1996a; A H2O producing NADH oxidase from the protozoan parasite Giardia duodenalis. Eur J Biochem 241:155–161 [CrossRef]
    [Google Scholar]
  5. Brown D. M., Upcroft J. A., Upcroft P. 1996b; A thioredoxin reductase-class of disulphide reductase in the protozoan parasite Giardia duodenalis . Mol Biochem Parasitol 83:211–220 [CrossRef]
    [Google Scholar]
  6. Brown D. M., Upcroft J. A., Edwards M. R., Upcroft P. 1998; Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis . Int J Parasitol 28:149–164 [CrossRef]
    [Google Scholar]
  7. Chen S., Clarke P. E., Martino P. A., Deng P. S. K., Yeh C.-C., Lee T. D., Prochaska H. J., Talalay P. 1994; Mouse liver NAD(P)H: quinone acceptor oxidoreductase: protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in Escherichia coli , and enzyme activity analysis. Protein Sci 3:1296–1304 [CrossRef]
    [Google Scholar]
  8. Chen S., Wu K., Zhang D., Sherman M., Knox R., Yang C. S. 1999; Molecular characterization of binding of substrates and inhibitors to DT-diaphorase: combined approach involving site-directed mutagenesis, inhibitor-binding analysis, and computer modeling. Mol Pharmacol 56:272–278
    [Google Scholar]
  9. Chen S., Wu K., Knox R. 2000; Structure–function studies of DT-diaphorase (NQO1) and NRH: quinone oxidoreductase (NQO2. Free Radic Biol Med 29:276–284 [CrossRef]
    [Google Scholar]
  10. Cui K., Lu A. Y. H., Yang C. S. 1995; Subunit functional studies of NAD(P)H: quinone oxidoreductase with a heterodimer approach. Proc Natl Acad Sci USA 92:1043–1047 [CrossRef]
    [Google Scholar]
  11. Dinkova-Kostova A. T., Talalay P. 2000; Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic Biol Med 29:231–240 [CrossRef]
    [Google Scholar]
  12. Ellis J. E., Setchell K. D. R., Kaneshiro E. S. 1994; Detection of ubiquinone in parasitic and free-living protozoa, including species devoid of mitochondria. Mol Biochem Parasitol 65:213–224 [CrossRef]
    [Google Scholar]
  13. Faig M., Bianchet M. A., Talalay P., Chen S., Winski S., Ross D., Amzel L. M. 2000; Structures of recombinant human and mouse NAD(P)H: quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci USA 97:3177–3182 [CrossRef]
    [Google Scholar]
  14. Foster C. E., Bianchet M. A., Talalay P., Zhao Q., Amzel L. M. 1999; Crystal structure of human quinone reductase Type 2, a metalloflavoprotein. Biochemistry 38:9881–9886 [CrossRef]
    [Google Scholar]
  15. Foster C. E., Bianchet M. A., Talalay P., Faig M., Amzel L. M. 2000; Structures of mammalian cytosolic quinone reductases. Free Radic Biol Med 29:241–245 [CrossRef]
    [Google Scholar]
  16. Keister D. 1983; Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488 [CrossRef]
    [Google Scholar]
  17. Laskowski R. A., McArthur M. W., Moss D. S., Thornton J. M. 1993; procheck: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291 [CrossRef]
    [Google Scholar]
  18. Li R., Bianchet M. A., Talalay P., Amzel L. M. 1995; The three-dimensional structure of NAD(P)H: quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci USA 92:8846–8859 [CrossRef]
    [Google Scholar]
  19. Martinez-Palomo A. 1982 The Biology of Entamoeba histolytica Chichester: Research Studies Press;
    [Google Scholar]
  20. Müller M. 1998; Enzymes and compartmentation of core energy metabolism of anaerobic protists – a special case in eukaryotic evolution?. In Evolutionary Relationships among Protozoa pp 109–131 Edited by Coombs G. H., Vickerman K., Sleigh M. A., Warren A. Dordrecht: Kluwer;
    [Google Scholar]
  21. Nakamura M., Hayashi T. 1994; One- and two-electron reduction of quinones by rat liver subcellular fractions. J Biochem 115:1141–1147
    [Google Scholar]
  22. Paget T. A., Jarroll E. L., Manning P., Lindmark D. G., Lloyd D. 1989; Respiration in the cysts and trophozoites of Giardia muris . J Gen Microbiol 135:145–154
    [Google Scholar]
  23. Philippe H. 1993; must, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 21:5264–5272 [CrossRef]
    [Google Scholar]
  24. Šali A. Blundell T. L. 1998; Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815
    [Google Scholar]
  25. Sánchez R., Šali A. 1997; Evaluation of comparative protein structure modeling by Modeller-3. Proteins Struct Funct Genet Suppl. 1:50–58
    [Google Scholar]
  26. Segura-Aguilar J., Kaiser R., Lind C. 1992; Separation and characterization of isoforms of DT-diaphorase from rat liver cytosol. Biochim Biophys Acta 1120:33–42 [CrossRef]
    [Google Scholar]
  27. Siegel D., Ross D. 2000; Immunodetection of NAD(P): quinone oxidoreducatase 1 (NQO1) in human tissues. Free Radic Biol Med 29:246–253 [CrossRef]
    [Google Scholar]
  28. Tedeschi G., Chen S., Massey V. 1995; DT-diaphorase. Redox potential, steady-state, and rapid reaction studies. J Biol Chem 270:1198–1204 [CrossRef]
    [Google Scholar]
  29. Weinbach E. C., Harlow D. R., Claggett C. E., Diamond L. S. 1977; Entamoeba histolytica : diaphorase activities. Exp Parasitol 41:186–197 [CrossRef]
    [Google Scholar]
  30. Weinbach E. C., Claggett C. E., Keister D. B., Diamond L. S., Kon H. 1980; Respiratory metabolism of Giardia lamblia . J Parasitol 66:347–350 [CrossRef]
    [Google Scholar]
  31. Wu K., Knox R., Sun X. Z., Joseph P., Jaiswal A. K., Zhang D., Deng P. S. K., Chen S. 1997; Catalytic properties of NAD(P)H: quinone oxidoreductase-2 (NQO2). a dihydronicotinamide ribose dependent oxidoreductase. Arch Biochem Biophys 347:221–228 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-561
Loading
/content/journal/micro/10.1099/00221287-147-3-561
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error