1887

Abstract

The sordarin class of natural products selectively inhibits fungal protein synthesis by impairing the function of eukaryotic elongation factor 2 (eEF2). Mutations in eEF2 or the ribosomal stalk protein rpP0 can confer resistance to sordarin, although eEF2 is the major determinant of sordarin specificity. It has been shown previously that sordarin specifically binds eEF2 while there is no detectable binding to eEF2 from plants or mammals, despite the high level of amino acid sequence conservation among these proteins. In both whole-cell assays and translation assays, the efficacy of sordarin varies among different species of pathogenic fungi. To investigate the basis of sordarin’s fungal selectivity, eEF2 has been cloned and characterized from several sordarin-sensitive and -insensitive fungal species. Results from expression of species eEF2s in and translation and growth inhibition assays using hybrid eEF2 proteins demonstrate that three amino acid residues within eEF2 account for the selectivity of this class of compounds. It is also shown that the corresponding residues at these positions in human eEF2 are sufficient to confer sordarin insensitivity to identical to that observed with mammalian eEF2.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-383
2001-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470383a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-383&mimeType=html&fmt=ahah

References

  1. Capa L., Mendoza A., Lavandera J. L., Gomez de las Heras F., Garcia-Bustos J. F. 1998; Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 42:2694–2699
    [Google Scholar]
  2. Dominguez J. M., Martin J. J. 1998; Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42:2279–2283
    [Google Scholar]
  3. Dominguez J. M., Kelly V. A., Kinsman O. S., Marriott M. S., Gomez de las Heras F., Martin J. J. 1998; Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 42:2274–2278
    [Google Scholar]
  4. Dominguez J. M., Gomez-Lorenzo M. G., Martin J. J. 1999; Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem 274:22423–22427 [CrossRef]
    [Google Scholar]
  5. Gomez-Lorenzo M. G., Garcia-Bustos J. F. 1998; Ribosomal P-protein stalk function is targeted by sordarin antifungals. J Biol Chem 273:25041–25044 [CrossRef]
    [Google Scholar]
  6. Gomez-Lorenzo M. G., Spahn C. M. T., Agrawal R. K.7 other authors 2000; Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17·5 Å resolution. EMBO J 19:2710–2718 [CrossRef]
    [Google Scholar]
  7. Grasmuk H., Nolan R. D., Drews J. 1977; Interchangeability of elongation factor-Tu and elongation factor-1 in aminoacyl-tRNA binding to 70 S and 80 S ribosomes. FEBS Lett 82:237–242 [CrossRef]
    [Google Scholar]
  8. Hauser D., Sigg H. P. 1971; Isolation and decomposition of sordarin. Helv Chim Acta 54:1178–1190 [CrossRef]
    [Google Scholar]
  9. Herreros E., Martinez C. M., Almela M. J., Marriott M. S., De Las Heras F. G., Gargallo-Viola D. 1998; Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carini and filamentous fungi. Antimicrob Agents Chemother 42:2863–2869
    [Google Scholar]
  10. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  11. Justice M. C., Hsu M.-J., Tse B., Ku T., Balkovec J., Schmatz D., Nielsen J. 1998; Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273:3148–3151 [CrossRef]
    [Google Scholar]
  12. Justice M. C., Ku T., Hsu M.-J., Carniol K., Schmatz D., Nielsen J. 1999; Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem 274:4869–4875 [CrossRef]
    [Google Scholar]
  13. Mendoza A., Serramia M. J., Capa L., Garcia-Bustos J. F. 1999; Translation elongation factor 2 is encoded by a single essential gene in Candida albicans. Gene 229:183–191 [CrossRef]
    [Google Scholar]
  14. Phan L. D., Perentesis J. P., Bodley J. W. 1993; Saccharomyces cerevisiae elongation factor 2. Mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J Biol Chem 268:8665–8668
    [Google Scholar]
  15. Prodromou C., Pearl L. H. 1992; Recursive PCR: a novel technique for total gene synthesis. Protein Eng 5:826–829
    [Google Scholar]
  16. Taira H., Ejiri S., Shimura K. 1972; The interaction of elongation factor 2 with ribosomes from silk gland. Formation of an EF-2-ribosome-GDP complex. J Biochem (Tokyo) 72:1527–1535
    [Google Scholar]
  17. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  18. Uchiumi T., Hori K., Nomura T., Hachimori A. 1999; Replacement of L7/L12.L10 protein complex in Escherichia coli ribosomes with the eukaryotic counterpart changes the specificity of elongation factor binding. J Biol Chem 274:27578–27582 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-383
Loading
/content/journal/micro/10.1099/00221287-147-2-383
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error