1887

Abstract

The microbial composition and spatial distribution in a terephthalate-degrading anaerobic granular sludge system were characterized using molecular techniques. 16S rDNA clone library and sequence analysis revealed that 78·5% of 106 bacterial clones belonged to the δ subclass of the class ; the remaining clones were assigned to the green non-sulfur bacteria (75%), (09%) and unidentified divisions (131%). Most of the bacterial clones in the δ- formed a novel group containing no known bacterial isolates. For the domain , 817% and 183% of 72 archaeal clones were affiliated with and , respectively. Spatial localization of microbial populations inside granules was determined by transmission electron microscopy and fluorescent hybridization with oligonucleotide probes targeting the novel δ-proteobacterial group, the acetoclastic , and the hydrogenotrophic and members of . The novel group included at least two different populations with identical rod-shape morphology, which made up more than 87% of the total bacterial cells, and were closely associated with methanogenic populations to form a nonlayered granular structure. This novel group was presumed to be the primary bacterial population involved in the terephthalate degradation in the methanogenic granular consortium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-373
2001-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470373a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-373&mimeType=html&fmt=ahah

References

  1. Alm, E. W., Oerther, D. O., Larsen, N., Stahl, D. A. & Raskin, L. ( 1996; ). The oligonucleotide probe database. Appl Environ Microbiol 62, 3557-3559.
    [Google Scholar]
  2. Amann, R. I., Stromley, J., Devereux, R., Key, R. & Stahl, D. A. ( 1992; ). Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58, 614-623.
    [Google Scholar]
  3. Amann, R. I., Ludwig, W. & Schleifer, K. H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143-169.
    [Google Scholar]
  4. Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. ( 1994; ). Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91, 1609-1613.[CrossRef]
    [Google Scholar]
  5. Bond, P. L., Hugenholtz, P., Keller, J. & Blackall, L. L. ( 1995; ). Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61, 1910-1916.
    [Google Scholar]
  6. Cheng, S. S., Ho, C. T. & Wu, J. H. ( 1997; ). Pilot study of UASB process treating PTA manufacturing wastewater. Water Sci Technol 36, 73-82.
    [Google Scholar]
  7. Dojka, M. A., Hugenholtz, P., Haack, S. & Pace, N. R. ( 1998; ). Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64, 3869-3877.
    [Google Scholar]
  8. Fang, H. H. P., Chui, H. K. & Li, Y. Y. ( 1994a; ). Microbial structure and activity of UASB granules treating different wastewaters. Water Sci Technol 30, 87-96.
    [Google Scholar]
  9. Fang, H. H. P., Chui, H. K., Li, Y. Y. & Chen, T. ( 1994b; ). Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins. Water Sci Technol 30, 55-63.
    [Google Scholar]
  10. Fang, H. H. P., Chui, H. K. & Li, Y. Y. ( 1995; ). Effect of degradation kinetics on the microstructure of anaerobic biogranules. Water Sci Technol 32, 165-172.
    [Google Scholar]
  11. Ferris, M. J., Muyzer, G. & Ward, D. M. ( 1996; ). Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62, 340-346.
    [Google Scholar]
  12. Franck, H. G. & Stadelhofer, L. W. ( 1988; ). p-Xylene and its derivatives: terephthalic acid. In Industrial Aromatic Chemistry , pp. 283-290. Edited by H. G. Franck. New York:Springer.
  13. Godon, J., Zumstein, E., Dabert, P., Habouzit, F. & Moletla, R. ( 1997; ). Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63, 2802-2813.
    [Google Scholar]
  14. Grotenhuis, J. T. C., Smit, M., Plugge, C. M., Yuansheng, X. U., van Lammeren, A. A. M., Stams, A. J. M. & Zehnder, A. J. B. ( 1991; ). Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57, 1942-1949.
    [Google Scholar]
  15. Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M. & Zehnder, A. J. B. ( 1992; ). Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge. Appl Environ Microbiol 58, 1054-1056.
    [Google Scholar]
  16. Harmsen, H. M., Kengen, H. M. P., Akkermans, A. D. L., Stams, A. J. M. & de Vos, W. M. ( 1996; ). Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl Environ Microbiol 62, 1656-1663.
    [Google Scholar]
  17. Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. H. ( 1997; ). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63, 3233-3241.
    [Google Scholar]
  18. Hugenholtz, P., Goeber, B. M. & Pace, N. R. ( 1998; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765-4774.
    [Google Scholar]
  19. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism , pp. 21-132. Edited by H. M. Munro. New York:Academic Press.
  20. Kleerebezem, R., Mortier, J., Hulshoff Pol, L. W. & Lettinga, G. ( 1997; ). Anaerobic pretreatment of petrochemical effluents: terephthalic acid wastewater. Water Sci Technol 36, 237-248.
    [Google Scholar]
  21. Kleerebezem, R., Hulshoff Pol, L. W. & Lettinga, G. ( 1999a; ). Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65, 1152-1160.
    [Google Scholar]
  22. Kleerebezem, R., Hulshoff Pol, L. W. & Lettinga, G. ( 1999b; ). The role of benzoate in anaerobic degradation of terephthalate. Appl Environ Microbiol 65, 1161-1167.
    [Google Scholar]
  23. Lau, C. M. ( 1977; ). Staging aeration for high-efficiency treatment of aromatics plant wastewater. Proc Ind Waste Conf Purdue Univ 32, 63-74.
    [Google Scholar]
  24. Lettinga, G. ( 1995; ). Anaerobic digestion and wastewater treatment systems. Antonie Leeuwenhoek 67, 3-28.[CrossRef]
    [Google Scholar]
  25. Liu, W. T., Marsh, T. L., Cheng, H. & Forney, L. J. ( 1997; ). Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of 16S ribosomal DNA. Appl Environ Microbiol 63, 4516-4522.
    [Google Scholar]
  26. Maidak, B. L., Olsen, G. L., Larsen, N., Overbeek, R., McCaughey, M. J. & Woese, C. R. ( 1997; ). The RDP (Ribosomal Database Project). Nucleic Acids Res 25, 109-110.[CrossRef]
    [Google Scholar]
  27. Mountfort, D. O., Brulla, W. J., Krumholz, L. R. & Bryant, M. P. ( 1984; ). Syntrophus buswellii gen. nov., sp. nov.: benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34, 216-217.[CrossRef]
    [Google Scholar]
  28. Muyzer, G. & Smalla, K. ( 1998; ). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73, 127-141.[CrossRef]
    [Google Scholar]
  29. Nielsen, A. T., Liu, W. T., Filipe, C., Grady, L., Molin, J. R. S. & Stahl, D. A. ( 1999; ). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65, 1251-1258.
    [Google Scholar]
  30. Owen, W. F., Stuckey, D. C., Herly, J. B.Jr, Young, L. Y. & McCarty, P. L. ( 1979; ). Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13, 485-492.[CrossRef]
    [Google Scholar]
  31. Pereboom, J. H. F., DeMan, G. & Su, Y. T. (1994). Start-up of full scale UASB reactor for the treatment of terephthalic acid wastewater. In 7th Int Symp on Anaerobic Digestion, vol. 3, pp. 307–312. Cape Town.
  32. Raskin, L., Stomley, J. M., Rittmann, B. E. & Stahl, D. A. ( 1994; ). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60, 1232-1240.
    [Google Scholar]
  33. Riesner, D., Steger, G., Zimmat, R., Owens, R. A., Wagenhofer, M., Hillen, W., Vollbach, S. & Henco, K. ( 1989; ). Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein–nucleic acid interactions. Electrophoresis 10, 377-389.[CrossRef]
    [Google Scholar]
  34. Rocheleau, S., Greer, C. W., Lawrence, J. R., Cantin, C., Larsme, L. & Guiot, S. R. ( 1999; ). Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescence in situ hybridization and confocal scanning laser microscopy. Appl Environ Microbiol 65, 2222-2229.
    [Google Scholar]
  35. Schink, B. ( 1997; ). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61, 262-280.
    [Google Scholar]
  36. Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H. & Nakamura, K. ( 1998; ). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144, 2655-2665.[CrossRef]
    [Google Scholar]
  37. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 1999; ). Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65, 1280-1288.
    [Google Scholar]
  38. Stahl, D. A. & Amann, R. ( 1991; ). Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics , pp. 205-248. Edited by E. Stackebrandt & M. Goodfellow. New York:Wiley.
  39. Suzuki, M. T. & Giovannoni, S. J. ( 1996; ). Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl Environ Microbiol 62, 625-630.
    [Google Scholar]
  40. Theile, J. H. & Zeikus, J. G. ( 1988; ). Interactions between hydrogen-and formate-producing bacteria and methanogens during anaerobic digestion. In Handbook on Anaerobic Fermentations , pp. 537-595. Edited by L. E. Erickson & D. Y. C. Fung. New York:Marcel Dekker.
  41. Whitman, W. B., Bowen, T. L. & Boone, D. R. ( 1992; ). The methanogenic bacteria. In The Prokaryotes , pp. 719-767. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York:Springer.
  42. Wintzingerode, V. F., Selent, B., Hegemann, W. & Göbel, U. B. ( 1999; ). Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65, 283-286.
    [Google Scholar]
  43. Wu, W. M., Hickey, R. F. & Zeikus, J. G. ( 1991; ). Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl Environ Microbiol 57, 3438-3449.
    [Google Scholar]
  44. Wu, W. M., Jain, M. K. & Zeikus, J. G. ( 1996; ). Formation of fatty acid-degrading, anaerobic granules by defined species. Appl Environ Microbiol 62, 2037-2044.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-373
Loading
/content/journal/micro/10.1099/00221287-147-2-373
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error