1887

Abstract

The microbial composition and spatial distribution in a terephthalate-degrading anaerobic granular sludge system were characterized using molecular techniques. 16S rDNA clone library and sequence analysis revealed that 78·5% of 106 bacterial clones belonged to the δ subclass of the class ; the remaining clones were assigned to the green non-sulfur bacteria (75%), (09%) and unidentified divisions (131%). Most of the bacterial clones in the δ- formed a novel group containing no known bacterial isolates. For the domain , 817% and 183% of 72 archaeal clones were affiliated with and , respectively. Spatial localization of microbial populations inside granules was determined by transmission electron microscopy and fluorescent hybridization with oligonucleotide probes targeting the novel δ-proteobacterial group, the acetoclastic , and the hydrogenotrophic and members of . The novel group included at least two different populations with identical rod-shape morphology, which made up more than 87% of the total bacterial cells, and were closely associated with methanogenic populations to form a nonlayered granular structure. This novel group was presumed to be the primary bacterial population involved in the terephthalate degradation in the methanogenic granular consortium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-373
2001-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470373a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-373&mimeType=html&fmt=ahah

References

  1. Alm E. W., Oerther D. O., Larsen N., Stahl D. A., Raskin L. 1996; The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  2. Amann R. I., Stromley J., Devereux R., Key R., Stahl D. A. 1992; Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58:614–623
    [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K. H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  4. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613 [CrossRef]
    [Google Scholar]
  5. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916
    [Google Scholar]
  6. Cheng S. S., Ho C. T., Wu J. H. 1997; Pilot study of UASB process treating PTA manufacturing wastewater. Water Sci Technol 36:73–82
    [Google Scholar]
  7. Dojka M. A., Hugenholtz P., Haack S., Pace N. R. 1998; Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877
    [Google Scholar]
  8. Fang H. H. P., Chui H. K., Li Y. Y. 1994a; Microbial structure and activity of UASB granules treating different wastewaters. Water Sci Technol 30:87–96
    [Google Scholar]
  9. Fang H. H. P., Chui H. K., Li Y. Y., Chen T. 1994b; Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins. Water Sci Technol 30:55–63
    [Google Scholar]
  10. Fang H. H. P., Chui H. K., Li Y. Y. 1995; Effect of degradation kinetics on the microstructure of anaerobic biogranules. Water Sci Technol 32:165–172
    [Google Scholar]
  11. Ferris M. J., Muyzer G., Ward D. M. 1996; Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346
    [Google Scholar]
  12. Franck H. G., Stadelhofer L. W. 1988; p-Xylene and its derivatives: terephthalic acid. In Industrial Aromatic Chemistry pp. 283–290Edited by Franck H. G. New York: Springer;
    [Google Scholar]
  13. Godon J., Zumstein E., Dabert P., Habouzit F., Moletla R. 1997; Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813
    [Google Scholar]
  14. Grotenhuis J. T. C., Smit M., Plugge C. M., Yuansheng X. U., van Lammeren A. A. M., Stams A. J. M., Zehnder A. J. B. 1991; Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57:1942–1949
    [Google Scholar]
  15. Grotenhuis J. T. C., Plugge C. M., Stams A. J. M., Zehnder A. J. B. 1992; Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge. Appl Environ Microbiol 58:1054–1056
    [Google Scholar]
  16. Harmsen H. M., Kengen H. M. P., Akkermans A. D. L., Stams A. J. M., de Vos W. M. 1996; Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl Environ Microbiol 62:1656–1663
    [Google Scholar]
  17. Heuer H., Krsek M., Baker P., Smalla K., Wellington E. M. H. 1997; Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241
    [Google Scholar]
  18. Hugenholtz P., Goeber B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132Edited by Munro H. M. New York: Academic Press;
    [Google Scholar]
  20. Kleerebezem R., Mortier J., Hulshoff Pol L. W., Lettinga G. 1997; Anaerobic pretreatment of petrochemical effluents: terephthalic acid wastewater. Water Sci Technol 36:237–248
    [Google Scholar]
  21. Kleerebezem R., Hulshoff Pol L. W., Lettinga G. 1999a; Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65:1152–1160
    [Google Scholar]
  22. Kleerebezem R., Hulshoff Pol L. W., Lettinga G. 1999b; The role of benzoate in anaerobic degradation of terephthalate. Appl Environ Microbiol 65:1161–1167
    [Google Scholar]
  23. Lau C. M. 1977; Staging aeration for high-efficiency treatment of aromatics plant wastewater. Proc Ind Waste Conf Purdue Univ 32:63–74
    [Google Scholar]
  24. Lettinga G. 1995; Anaerobic digestion and wastewater treatment systems. Antonie Leeuwenhoek 67:3–28 [CrossRef]
    [Google Scholar]
  25. Liu W. T., Marsh T. L., Cheng H., Forney L. J. 1997; Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of 16S ribosomal DNA. Appl Environ Microbiol 63:4516–4522
    [Google Scholar]
  26. Maidak B. L., Olsen G. L., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–110 [CrossRef]
    [Google Scholar]
  27. Mountfort D. O., Brulla W. J., Krumholz L. R., Bryant M. P. 1984; Syntrophus buswellii gen. nov., sp. nov.: benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34:216–217 [CrossRef]
    [Google Scholar]
  28. Muyzer G., Smalla K. 1998; Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127–141 [CrossRef]
    [Google Scholar]
  29. Nielsen A. T., Liu W. T., Filipe C., Grady L., Molin J. R. S., Stahl D. A. 1999; Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258
    [Google Scholar]
  30. Owen W. F., Stuckey D. C., Herly J. B. Jr, Young L. Y., McCarty P. L. 1979; Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492 [CrossRef]
    [Google Scholar]
  31. Pereboom J. H. F., DeMan G., Su Y. T. 1994; Start-up of full scale UASB reactor for the treatment of terephthalic acid wastewater. In 7th Int Symp on Anaerobic Digestion vol. 3 pp. 307–312 Cape Town:
    [Google Scholar]
  32. Raskin L., Stomley J. M., Rittmann B. E., Stahl D. A. 1994; Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240
    [Google Scholar]
  33. Riesner D., Steger G., Zimmat R., Owens R. A., Wagenhofer M., Hillen W., Vollbach S., Henco K. 1989; Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein–nucleic acid interactions. Electrophoresis 10:377–389 [CrossRef]
    [Google Scholar]
  34. Rocheleau S., Greer C. W., Lawrence J. R., Cantin C., Larsme L., Guiot S. R. 1999; Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescence in situ hybridization and confocal scanning laser microscopy. Appl Environ Microbiol 65:2222–2229
    [Google Scholar]
  35. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
    [Google Scholar]
  36. Sekiguchi Y., Kamagata Y., Syutsubo K., Ohashi A., Harada H., Nakamura K. 1998; Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144:2655–2665 [CrossRef]
    [Google Scholar]
  37. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 1999; Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288
    [Google Scholar]
  38. Stahl D. A., Amann R. 1991; Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics pp. 205–248Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  39. Suzuki M. T., Giovannoni S. J. 1996; Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630
    [Google Scholar]
  40. Theile J. H., Zeikus J. G. 1988; Interactions between hydrogen-and formate-producing bacteria and methanogens during anaerobic digestion. In Handbook on Anaerobic Fermentations pp. 537–595Edited by Erickson L. E., Fung D. Y. C. New York: Marcel Dekker;
    [Google Scholar]
  41. Whitman W. B., Bowen T. L., Boone D. R. 1992; The methanogenic bacteria. In The Prokaryotes pp. 719–767Edited by Balows A., Trüper H. G. , Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  42. Wintzingerode V. F., Selent B., Hegemann W., Göbel U. B. 1999; Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65:283–286
    [Google Scholar]
  43. Wu W. M., Hickey R. F., Zeikus J. G. 1991; Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl Environ Microbiol 57:3438–3449
    [Google Scholar]
  44. Wu W. M., Jain M. K., Zeikus J. G. 1996; Formation of fatty acid-degrading, anaerobic granules by defined species. Appl Environ Microbiol 62:2037–2044
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-373
Loading
/content/journal/micro/10.1099/00221287-147-2-373
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error