1887

Abstract

The regulation of the divergent promoters of the genes in ATCC 17933, in which encodes a quinoprotein ethanol dehydrogenase and codes for a cytochrome , was studied. Using transcriptional fusions, promoter activity during growth on several substrates was measured. These promoter-probe vectors were also used to identify regulatory mutants defective in induction. Transcription from both and was reduced significantly in four mutants. Two other mutants showed transcription from that was reduced, but higher than wild-type transcription from . The genes that are needed for promoter induction were sequenced and found to encode a two-component regulatory system: a histidine sensor kinase, which lacks a transmembrane helical N-terminus and is presumably located in the cytoplasm, and a response regulator. The phenotypic characterization and restoration of the wild-type behaviour of the different regulatory mutants produced by different cosmids and subclones indicate that six different genes may be involved in regulating ethanol oxidation in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-363
2001-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470363a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-363&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast andpsi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anthony C. 1996; Quinoprotein catalysed reactions. Biochem J 320:697–711
    [Google Scholar]
  3. Bilwes A. M., Alex L. A., Crane B. R., Simon M. I. 1999; Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141 [CrossRef]
    [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 14:459–472
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254
    [Google Scholar]
  6. Cetin E. T., Töreci K., Ang . 1965; Encapsulated Pseudomonas aeruginosa (Pseudomonas mucosus) strains. J Bacteriol 89:1432–1433
    [Google Scholar]
  7. Diehl A., von Wintzingerode F., Görisch H. 1998; Quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa is a homodimer – sequence of the gene and deduced structural properties of the enzyme. Eur J Biochem 257:409–419 [CrossRef]
    [Google Scholar]
  8. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652 [CrossRef]
    [Google Scholar]
  9. Friedrich M. J., Kadner R. J. 1987; Nucleotide sequence of the uhp region of Escherichia coli. J Bacteriol 169:3556–3563
    [Google Scholar]
  10. Goodwin P. M., Anthony C. 1998; The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80
    [Google Scholar]
  11. Henikoff S., Wallace J. C., Brown J. P. 1990; Finding protein similarities with nucleotide sequence databases. Methods Enzymol 183:111–132
    [Google Scholar]
  12. Hirokawa T., Boon-Chieng S., Mitaku S. 1998; sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379 [CrossRef]
    [Google Scholar]
  13. Island M. D., Wei B. Y., Kadner R. J. 1992; Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol 174:2754–2762
    [Google Scholar]
  14. Keitel T., Diehl A., Knaute T., Stezowski J. J., Höhne W., Görisch H. 2000; X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J Mol Biol 297:961–974 [CrossRef]
    [Google Scholar]
  15. Lidstrom M. E., Anthony C., Biville F., Gasser F., Goodwin P., Hanson R. S., Harms N. 1994; New unified nomenclature for genes involved in the oxidation of methanol in gram-negative bacteria. FEMS Microbiol Lett 117:103–106 [CrossRef]
    [Google Scholar]
  16. Miller J. M. 1992 A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Morris C. J., Lidstrom M. E. 1992; Cloning of a methanol-inducible moxF promoter and its analysis in moxB mutants of Methylobacterium extorquens AM1rif. J Bacteriol 174:4444–4449
    [Google Scholar]
  18. Nunn D. N., Day D., Anthony C. 1989; The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1. Biochem J 260:857–862
    [Google Scholar]
  19. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell 73:857–871 [CrossRef]
    [Google Scholar]
  20. Ramamoorthi R., Lidstrom M. E. 1995; Transcriptional analysis of pqqD and study of the regulation of pyrroloquinoline quinone biosynthesis in Methylobacterium extorquens AM1. J Bacteriol 177:206–211
    [Google Scholar]
  21. Reichmann P., Görisch H. 1993; Cytochrome c550 from Pseudomonas aeruginosa. Biochem J 289:173–178
    [Google Scholar]
  22. Ronald S., Farinha M. A., Allan B. J., Kropinski A. M. 1992; Cloning and physical mapping of transcriptional regulatory (sigma) factors from Pseudomonas aeruginosa. In Pseudomonas, Molecular Biology and Biotechnology pp. 249–257Edited by Galli E., Silver S., Withold B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Rupp M., Görisch H. 1988; Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biol Chem Hoppe-Seyler 369:431–439 [CrossRef]
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Schobert M., Görisch H. 1999; Cytochrome c 550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the gene encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145:471–481 [CrossRef]
    [Google Scholar]
  26. Schwartz E., Gerischer U., Friedrich B. 1998; Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 180:3197–3204
    [Google Scholar]
  27. Schweizer H. P. 1991; The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J Bacteriol 173:6798–6806
    [Google Scholar]
  28. Schweizer H. P., Klassen T. R., Hoang T. 1996; Improved methods for gene analysis in Pseudomonas. In Molecular Biology of Pseudomonads pp. 229–237Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. van Spanning R. J. M., de Vries S., Harms N. 2000; Coping with formaldehyde during C1 metabolism of Paracoccus denitrificans. J Mol Catalysis B: Enzymatic 8:37–50 [CrossRef]
    [Google Scholar]
  30. Springer A. L., Chou H. H., Fan W. H., Lee E., Lidstrom M. E. 1995; Methanol oxidation mutants in Methylobacterium extorquens AM1: identification of new genetic complementation groups. Microbiology 141:2985–2993 [CrossRef]
    [Google Scholar]
  31. Springer A. L., Morris C. J., Lidstrom M. E. 1997; Molecular analysis of mxbD and mxbM, a putative sensor–regulator pair required for oxidation of methanol in Methylobacterium extorquens AM1. Microbiology 143:1737–1744 [CrossRef]
    [Google Scholar]
  32. Springer A. L., Auman A. J., Lidstrom M. E. 1998; Sequence and characterization of mxaB, a response regulator involved in regulation of methanol oxidation, and of xaW, a methanol-regulated gene in Methylobacterium extorquens AM1. FEMS Microbiol Lett 160:119–124 [CrossRef]
    [Google Scholar]
  33. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794
    [Google Scholar]
  34. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Xu H. H., Janka J. J., Viebahn M., Hanson R. S. 1995; Nucleotide sequence of the mxcQ and mxcE genes, required for methanol dehydrogenase synthesis in Methylobacterium organophilum XX: a two-component regulatory system. Microbiology 141:2543–2551 [CrossRef]
    [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-363
Loading
/content/journal/micro/10.1099/00221287-147-2-363
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error