1887

Abstract

DNase A is a non-specific endonuclease of . The enzyme was purified to homogeneity and its properties studied both and . Magnesium but not calcium was essential for nucleolytic activity. Manganese ions substituted for magnesium but were less stimulatory. DNase A activity was markedly inhibited by either NaCl or KCl at concentrations greater than 75 mM. The enzyme had a temperature optimum of 25 °C and a pH optimum of about 70. Values for and were determined to be 61 μM and 330 s respectively, with a catalytic efficiency approximately threefold greater than bovine pancreatic DNase I, but 10-fold less than the NucA. DNase A was localized to the periplasm and probably exists as a monomeric species. The enzyme possessed one or more disulfide bonds. In the reduced form it had an apparent mass of 33 kDa, while in the oxidized form it was 29 kDa as estimated by SDS-PAGE. Reduction of the disulfide bonds by dithiothreitol with or without subsequent alkylation by iodoacetamide strongly inactivated the enzyme. DNase A accumulated had an apparent mass of 29 kDa, indicating that it was in an oxidized form. This is the first indication in a strict anaerobe of a functional periplasmic disulfide bond forming system, phenotypically similar to Dsb systems in facultative and aerobic bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-315
2001-02-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470315a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-315&mimeType=html&fmt=ahah

References

  1. Anderson J. A. K., Kuntz G. P. P., Evans H. H., Swift S. J. 1971; Preferential interaction of manganous ions with the guanine moiety in nucleosides, dinucleoside monophophates, and deoxyribonucleic acid. Biochemistry 10:4368–4374 [CrossRef]
    [Google Scholar]
  2. Bader M., Muse W., Ballou D. P., Gassner C., Bardwell J. C. A. 1999; Oxidative protein folding is driven by the electron transport system. Cell 98:217–227 [CrossRef]
    [Google Scholar]
  3. Ball T. K., Wasmuth C. R., Braunagel S. C., Benedik M. J. 1990; Expression of Serratia marcescens extracellular proteins requires recA. J Bacteriol 172:342–349
    [Google Scholar]
  4. Ball T. K., Suh Y., Benedik J. 1992; Disulfide bonds are required for Serratia marcescens nuclease activity. Nucleic Acids Res 20:4971–4974 [CrossRef]
    [Google Scholar]
  5. Benedik M. J., Strych U. 1998; Serratia marcescens and its extracellular nuclease. FEMS Microbiol Lett 165:1–13 [CrossRef]
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram amounts of protein using the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  7. Chesson A., Forsberg C. W. 1997; Polysaccharide degradation by rumen microorganisms. In The Rumen Microbial Ecosystem pp. 329–381Edited by Hobson P., Stewart C. Andover: Chapman & Hall;
    [Google Scholar]
  8. Dawson R. M., Elliot C. D. C., Elliot W. H., Jones K. M. 1986; Vitamins and coenzymes. In Data for Biochemical Research pp. 122Edited by Dawson R. M. C., Elliot D. C., Elliot W. H., Jones K. M. Oxford: Clarendon Press;
    [Google Scholar]
  9. Dickie P., Weiner J. H. 1979; Purification and characterization of membrane bound fumarate reductase from anaerobically grown Escherichia coli. Can J Biochem 57:813–821
    [Google Scholar]
  10. Doherity A. J., Worrall A. F., Connolly B. A. 1995; The roles of arginine 41 and tyrosine 76 in the coupling of DNA recognition to phosphodiester bond cleavage by DNase I: a study using site-directed mutagenesis. J Mol Biol 251:366–377 [CrossRef]
    [Google Scholar]
  11. Ellis K. J., Morrison J. F. 1982; Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 87:405–426
    [Google Scholar]
  12. Friedhoff P., Meiss G., Kolmes B., Pieper U., Gimadutdinow O., Urbanke C., Pingoud A. 1996; Kinetic analysis of the cleavage of natural and synthetic substrates by the Serratia nuclease. Eur J Biochem 241:572–580 [CrossRef]
    [Google Scholar]
  13. Gong J., Forsberg C. W. 1993; Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanase and cellobiase. J Bacteriol 175:6810–6821
    [Google Scholar]
  14. Hale S. P., Poole L. B., Gerlt J. A. 1993; Mechanism of the reaction catalyzed by staphylococcal nuclease: identification of the rate-determining step. Biochemistry 32:7479–7487 [CrossRef]
    [Google Scholar]
  15. Halliwell G., Bryant M. P. 1963; The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J Gen Microbiol 32:441–448 [CrossRef]
    [Google Scholar]
  16. Huang L., Forsberg C. W. 1988; Purification and comparison of the periplasmic and extracellular forms of the cellodextrinase from Bacteroides succinogenes. Appl Environ Microbiol 54:1488–1493
    [Google Scholar]
  17. Iyo A. H., Forsberg C. W. 1999; A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol 65:995–998
    [Google Scholar]
  18. Kejnovsky E., Kypr J. 1998; Millimolar concentrations of zinc and other metal cations cause sedimentation of DNA. Nucleic Acids Res 26:5295–5299 [CrossRef]
    [Google Scholar]
  19. Kishigami S., Akiyama Y., Ito K. 1995; Redox states of DsbA in the periplasm of Escherichia coli. FEBS Lett 364:55–58 [CrossRef]
    [Google Scholar]
  20. Kobayashi T., Ito K. 1999; Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. EMBO J 18:1192–1198 [CrossRef]
    [Google Scholar]
  21. Kunitz M. 1950; Crystalline desoxyribonuclease. I. Isolation and general properties: spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol 33:349–362 [CrossRef]
    [Google Scholar]
  22. Kuo J. 1992; About non-linear regression. In SigmaPlot Scientific Graphics Software: Transformation and Curvefitting Reference pp. 7.1–7.2Edited by Kuo J. San Rafael, CA: Jandel Corporation;
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Langlais M., Tajmir-Riahi H. A., Savoie R. 1990; Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+ and Cd2+ ions on calf thymus DNA: binding sites and conformational changes. Biopolymers 30:743–752 [CrossRef]
    [Google Scholar]
  25. Lee S. F., Forsberg C. W., Gibbins A. M. 1992; Type-II DNA restriction modification system and an endonuclease from the ruminal bacterium Fibrobacter succinogenes S85. J Bacteriol 174:5275–5283
    [Google Scholar]
  26. Malamy M., Horecker B. L. 1961; The localization of alkaline phosphatase in E. coli K12. Biochem Biophys Res Commun 5:104–107 [CrossRef]
    [Google Scholar]
  27. Meinhardt S. W., Glass T. L. 1994; Characterization of the NADH dehydrogenase and fumarate reductase of Fibrobacter succinogenes subsp. succinogenes S85. Arch Microbiol 162:329–334 [CrossRef]
    [Google Scholar]
  28. Meiss G., Franke I., Gimadutdinow O., Urbanke C., Pingoud A. 1998; Biochemical characterization of Anabaena sp. strain PCC 7120 non-specific nuclease NucA and its inhibitor NuiA. Eur J Biochem 251:924–934 [CrossRef]
    [Google Scholar]
  29. Olmstead J. B. 1986; Analysis of cytoskeletal structures using blot-purified monospecific antibodies. Methods Enzymol 134:467–472
    [Google Scholar]
  30. Poole L. B., Loveys D. A., Hale S. P., Gerlt J. A., Stanczyck S. M., Bolton P. H. 1991; Deletion of the omega loop in the active site of staphylococcal nuclease: effect on catalysis and stability. Biochemistry 30:3621–3627 [CrossRef]
    [Google Scholar]
  31. Scott H. W., Dehority B. A. 1965; Vitamin requirements of several cellulolytic bacteria. J Bacteriol 89:1169–1175
    [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T.7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [CrossRef]
    [Google Scholar]
  33. Weimer P. J. 1996; Why don’t ruminal bacteria digest cellulose faster?. J Dairy Sci 79:1496–1502 [CrossRef]
    [Google Scholar]
  34. Weiner J. H. 1974; The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli. J Membr Biol 15:1–14 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-315
Loading
/content/journal/micro/10.1099/00221287-147-2-315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error