1887

Abstract

Bacteriophage infecting , one of the most abundant bacteria in the human colon, have been proposed as indicators of virological faecal pollution. The first identification of a receptor for a bacteriophage in is reported here. First, resistant mutants were characterized following phage inactivation, and it was shown that cell wall proteins are involved in phage binding. Then the proteins involved were identified by various approaches: (i) comparison of the protein profiles of wild-type HSP40 and phage-resistant mutants; (ii) application of a modification of the virus overlay protein blot assay (VOPBA). At least two proteins of , with apparent molecular masses of 35 ± 5 kDa and 65 ± 5 kDa, bind to B40-8. This result was later confirmed by running a complex consisting of this phage bound to radiolabelled proteins of on an immunoaffinity column loaded with a specific antibody against the phage. Cell proteins retained in the column also coincided with the proteins that differed in the profiles of resistant mutants. Finally, to identify the potential function of these two proteins, their N-terminal sequences were determined and compared to published sequences, but no homologies were found.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-281
2001-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470281a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-281&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages New York: Interscience;
    [Google Scholar]
  2. Beumer J., Hannecart-Pokorni E., Godard C. 1984; Bacteriophage receptors. Bull Inst Pasteur (Paris) 82:173–253
    [Google Scholar]
  3. Booth S. J., Van Tassell R. L., Johnson J. L., Wilkins T. D. 1979; Bacteriophages of Bacteroides. Rev Infect Dis 1:325–336 [CrossRef]
    [Google Scholar]
  4. Cheng Q., Yu M. C., Reeves A. R., Salyers A. A. 1995; Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol 177:3721–3727
    [Google Scholar]
  5. Clowes R. C., Hayes W. 1968 Experiments in Microbial Genetics Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  6. Crane S. E., Buzy J., Clements J. E. 1991; Identification of cell membrane proteins that bind Visna virus. J Virol 65:6137–6143
    [Google Scholar]
  7. Eriksson U., Lindberg A. A. 1977; Adsorption of phage P22 to Salmonella typhimurium. J Gen Virol 34:207–221 [CrossRef]
    [Google Scholar]
  8. Filip C., Fletcher G., Wulff J. L., Earhart C. F. 1973; Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115:717–722
    [Google Scholar]
  9. Gershoni J. M., Lapidot M., Zakai N., Loyter A. 1986; Protein blot analysis of virus receptors, identification and characterization of the Sendai virus receptor. Biochim Biophys Acta 856:19–26 [CrossRef]
    [Google Scholar]
  10. Goldenberg D. P. 1989; Analysis of protein conformation by gel electrophoresis. In Protein Structure. A Practical Approach pp. 225–250Edited by Creighton T. E. Oxford: IRL Press;
    [Google Scholar]
  11. Harlow E., Lane D. 1988 Antibodies. A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Heller K. J. 1992; Molecular interaction between bacteriophage and the gram-negative cell envelope. . Arch Microbiol 158:235–248 [CrossRef]
    [Google Scholar]
  13. International Association of Water Pollution Research Control Study Group on Health Related Water Microbiology 1991; Bacteriophages as model viruses in water quality control. Water Res 25:529–545 [CrossRef]
    [Google Scholar]
  14. Jofre J., Olle E., Ribas F., Vidal A., Lucena F. 1995; Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants. Appl Environ Microbiol 61:3227–3231
    [Google Scholar]
  15. Karger A., Mettenleiter T. C. 1996; Identification of cell surface molecules that interact with pseudorabies virus. J Virol 70:6137–6143
    [Google Scholar]
  16. Keller R., Traub N. 1974; The characterization of Bacteroides fragilis bacteriophage recovered from animal sera: observations on the nature of bacteroides phage carrier cultures. J Gen Virol 24:179–189 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  18. Lasobras J., Muniesa M., Frias J., Lucena F., Jofre J. 1997; Relationship between the morphology of bacteriophages and their persistence in the environment. . Water Sci Technol 35:129–132
    [Google Scholar]
  19. Madrid C. 1992 Les mutacions hha i hpa, increment de l’expressió de proteı̈nes heteròlogues clonades a Escherichia coli PhD thesis University of Barcelona;
    [Google Scholar]
  20. Moore W. E., Holdeman L. V. 1974; Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979
    [Google Scholar]
  21. Moore W. E., Moore L. H. 1995; Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207
    [Google Scholar]
  22. Osborn M. J., Wu H. C. P. 1980; Proteins of the outer membrane of Gram-negative bacteria. Annu Rev Microbiol 34:369–422 [CrossRef]
    [Google Scholar]
  23. Payment P., Franco E. 1993; Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Appl Environ Microbiol 59:2418–2424
    [Google Scholar]
  24. Puig M., Girones R. 1999; Genomic structure of phage B40-8 of Bacteroides fragilis. Microbiology 145:1661–1670 [CrossRef]
    [Google Scholar]
  25. Puig M., Jofre J., Girones R. 2000; Detection of phages infecting Bacteroides fragilis HSP40 using a specific DNA probe. J Virol Methods 88:163–173 [CrossRef]
    [Google Scholar]
  26. Salas-Benito J. S., del Angel R. M. 1997; Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. . J Virol 71:7246–7252
    [Google Scholar]
  27. Salyers A. A. 1984; Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 38:293–313 [CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Scheider H., Fsihi H., Kottwitz B., Mygind B., Bremer E. 1993; Identification of a segment of Escherichia coli Tsx protein that functions as a bacteriophage receptor area. J Bacteriol 175:2809–2817
    [Google Scholar]
  30. Schwartz M. 1980; Interaction of phages with their receptor proteins. In Receptor and Recognition, Series B vol. 6Virus Receptors, part 1. Bacterial Viruses pp. 59–94Edited by Randall L., Philipson L. London: Chapman & Hall;
    [Google Scholar]
  31. Tartera C. 1986 Estudi dels bacteriofags de Bacteroides fragilis com a indicadors de la contaminació fecal virica PhD thesis University of Barcelona;
    [Google Scholar]
  32. Tartera C., Jofre J. 1987; Bacteriophages active against Bacteroides fragilis in sewage-polluted water. Appl Environ Microbiol 53:1632–1637
    [Google Scholar]
  33. Tartera C., Araujo R., Michel T., Jofre J. 1992; Culture and decontamination methods affecting enumeration of phages infecting Bacteroides fragilis in sewage. Appl Environ Microbiol 55:2696–2701
    [Google Scholar]
  34. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. 1985; Natural relationship between bacteroides and flavobacteria. J Bacteriol 164:230–236
    [Google Scholar]
  35. Wendlinger G., Loessner M. J., Scherer S. 1996; Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142:985–992 [CrossRef]
    [Google Scholar]
  36. Yokota S., Hayashi T., Mutsumoto H. 1994; Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa. . J Bacteriol 176:5262–5269
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-281
Loading
/content/journal/micro/10.1099/00221287-147-2-281
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error