1887

Abstract

Transcription of , and , three clustered genes on the chromosome, is simultaneously induced by sucrose. Northern blotting analyses with specific probes showed three distinct mRNAs: a monocistronic 17 kb mRNA, a bicistronic 33 kb mRNA and a tricistronic 49 kb mRNA. These results indicate that , encoding levansucrase, is the proximal gene of a sucrose-inducible operon that includes the two other genes. The yield of the full-length transcript is lower than that of the bicistronic transcript, whose yield is itself lower than that of the monocistronic transcript. This suggested that the 3′ terminal parts of and genes worked as internal terminator structures. The protein encoded by , which remains anchored to the membrane, displays an endolevanase activity, which, coupled with exolevanase activity of SacB, leads to a complete degradation of levan, a branched fructosyl polymer. It is proposed to rename as

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-12-3413
2001-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/12/1473413a.html?itemId=/content/journal/micro/10.1099/00221287-147-12-3413&mimeType=html&fmt=ahah

References

  1. Aymerich, S. & Steinmetz, M. (1992). Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci U S A 89, 10410-10414.[CrossRef] [Google Scholar]
  2. Chambert, R. & Petit-Glatron, M. F. (1984). Hyperproduction of exocellular levansucrase by Bacillus subtilis: examination of the phenotype of a sacUh strain. J Gen Microbiol 130, 3143-3152. [Google Scholar]
  3. Chambert, R. & Petit-Glatron, M. F. (1993). Immobilisation of levansucrase on calcium phosphate gel strongly increases its polymerase activity. Carbohydr Res 244, 129-136.[CrossRef] [Google Scholar]
  4. Chambert, R., Tréboul, G. & Dedonder, R. (1974). Kinetic studies of levansucrase of Bacillus subtilis. Eur J Biochem 41, 285-300.[CrossRef] [Google Scholar]
  5. Crutz, A. M., Steinmetz, M., Aymerich, S., Richter, R. & Le Coq, D. (1990). Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol 172, 1043-1050. [Google Scholar]
  6. Haldenwang, W. (1995). The sigma factors of Bacillus subtilis. Microbiol Rev 59, 1-30. [Google Scholar]
  7. Kunst, F. Ogasawara, N., Moszer, I. & 148 other authors (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef] [Google Scholar]
  8. Leloup, L., Haddaoui, E., Chambert, R. & Petit-Glatron, M. F. (1997). Characterization of the rate limiting step of the secretion of Bacillus subtilis α-amylase overproduced during the exponential phase of growth. Microbiology 143, 3295-3303.[CrossRef] [Google Scholar]
  9. Leloup, L., Le Saux, J., Petit-Glatron, M. F. & Chambert, R. (1999a). Kinetics of the secretion of Bacillus subtilis levanase overproduced during the exponential phase of growth. Microbiology 145, 613-619.[CrossRef] [Google Scholar]
  10. Leloup, L., Chambert, R. & Petit-Glatron, M. F. (1999b). Differential dependence of levansucrase and alpha-amylase secretion on SecA (Div) during the exponential phase of growth of Bacillus subtilis. J Bacteriol 181, 1820-1826. [Google Scholar]
  11. Lepesant, J. A., Kunst, F., Lepesant-Kejzlarova, J. & Dedonder, R. (1972). Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol Gen Genet 118, 135-160. [Google Scholar]
  12. Li, Y., Triccas, J. A. & Ferenci, T. (1997). A novel levansucrase-levanase gene cluster in Bacillus stearothermophilus ATCC12980. Biochim Biophys Acta 1353, 203-208.[CrossRef] [Google Scholar]
  13. Nakai, K. & Kanehisa, M. (1991). Expert system for predicting protein localization sites in Gram-negative bacteria. Proteins 11, 95-110.[CrossRef] [Google Scholar]
  14. Naumoff, D. G. (1999). Homologous locus of Bacillus subtilis and Bacillus stearothermophilus genomes containing levansucrase and levanase genes. Mol Biol 33, 173-176. [Google Scholar]
  15. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. (1997). A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8, 581-599.[CrossRef] [Google Scholar]
  16. Pereira, Y., Chambert, R., Leloup, L., Daguer, J. P. & Petit-Glatron, M. F. (2001). Transcripts of the genes sacB, amyE, sacC and csn expressed in Bacillus subtilis under the control of the 5′ untranslated sacR region display different stabilities that can be modulated. Microbiology 147, 1331-1341. [Google Scholar]
  17. Rapoport, G. & Dedonder, R. (1963). La lévane saccharase de Bacillus subtilis. II. Hydrolyse et transfert à partir des lévanes. Bull Soc Chim Biol 45, 493-513. [Google Scholar]
  18. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  19. Shimotsu, H. & Henner, D. J. (1986). Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of steady-state mRNA level by sacU and sacQ genes. J Bacteriol 168, 380-388. [Google Scholar]
  20. Slocum, M. K. & Parkinson, J. S. (1983). Genetics of methyl accepting chemotaxis proteins in Escherichia coli: organization of the Tar region.J Bacteriol 155, 565-577. [Google Scholar]
  21. Song, K. B., Seo, J. W. & Rhee, S. K. (1999). Transcriptional analysis of levU operon encoding saccharolytic enzymes and two apparent genes involved in amino acid biosynthesis in Zymomonas mobilis. Gene 232, 107-114.[CrossRef] [Google Scholar]
  22. Steinmetz, M. & Aymerich, S. (1986). Genetic analysis of sacR, a cis-regulator of levan-saccharase synthesis of Bacillus subtilis.Ann Inst Pasteur Microbiol 137A, 3-14. [Google Scholar]
  23. Steinmetz, M., Le Coq, D., Aymerich, S., Gonzy-Tréboul, G. & Gay, P. (1985). The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet 200, 220-228.[CrossRef] [Google Scholar]
  24. Tjalsma, H., Bolhuis, A., Jongbloed, J. D., Bron, S. & van Dijl, J. M. (2000). Signal peptide-dependent protein transport in Bacillus subtilis: genome-based survey of the secretome. Microbiol Mol Biol Rev 64, 515-547.[CrossRef] [Google Scholar]
  25. Tortosa, P. & Le Coq, D. (1995). A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Microbiology 141, 2921-2927.[CrossRef] [Google Scholar]
  26. Wanker, E., Schörgendorfer, K. & Schwab, H. (1991). Expression of the Bacillus subtilis levanase gene in Escherichia coli and Saccharomyces cerevisiae.J Biotechnol 18, 243-254.[CrossRef] [Google Scholar]
  27. Zuker, M., Mathews, D. H. & Turner, D. H. (1999). Algorithms and thermodynamics for RNA secondary structure prediction. A practical guide. In RNA Biochemistry and Biotechnology , pp. 11-43. Edited by J. Barciszewski & B. F. C. Clark. Dordrecht:Kluwer.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-12-3413
Loading
/content/journal/micro/10.1099/00221287-147-12-3413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error