Genes encoding bile salt hydrolases and conjugated bile salt transporters in 100-100 and other species Free

Abstract

strain 100-100 expresses two antigenically distinct conjugated bile salt hydrolases (BSH), α and β, that combine to form native homo- and heterotrimers. This paper reports characterization of loci within the genome that encode this capacity. A locus that encodes BSHβ (β), a partial () and a complete conjugated bile salt transporter () was identified previously. DNA sequence analysis at this locus was extended and revealed a complete ORF for and no other ORFs in tandem. The three genes, , and β, probably constitute an operon; a putative promoter was identified upstream of . A second locus that expresses BSH activity in strain 100-100 was identified. Sequence analysis of the clone predicted a 978 nt ORF that did not share tandem organization with other ORFs, was similar in sequence to other BSH genes, and matched, in predicted protein sequence, the first 25 amino acids of BSHα. A phenotypic screen for BSH activity and a genetic screen for the β locus were performed on 50 isolates from humans or dairy products. Nearly all of the isolates that were positive for β were from human sources. Variability in the BSH phenotype and β genotype was identified in isolates of the same species. DNA sequence was obtained and analysed from the β locus of one human isolate, strain KS-13. This organism has , and β genes that are 84, 87 and 85% identical in DNA sequence to those of strain 100-100. DNA sequence identity to strain 100-100 ends in regions flanking this locus. The findings of this study suggest that BSH genes have been acquired horizontally and that BSH activity is important at some level for lactobacilli to colonize the lower gastrointestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-12-3403
2001-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/12/1473403a.html?itemId=/content/journal/micro/10.1099/00221287-147-12-3403&mimeType=html&fmt=ahah

References

  1. Abe, K., Ruan, Z.-S. & Maloney, P. C. (1996). Cloning, sequencing, and expression in Escherichia coli of OxlT, the oxalate:formate exchange protein of Oxalobacter formigenes. J Biol Chem 271, 6789-6793.[CrossRef] [Google Scholar]
  2. Aries, V. & Hill, M. J. (1970). Degradation of steroids by intestinal bacteria. Biochim Biophys Acta 202, 526-534.[CrossRef] [Google Scholar]
  3. Baron, S. F. & Hylemon, P. B. (1997). Biotransformation of bile acids, cholesterol, and steroid hormones. In Gastrointestinal Microbiology, vol. I, Gastrointestinal Ecosystems and Fermentations , pp. 470-510. Edited by R. I. Mackie & B. A. White. New York:International Thomson Publishing.
  4. Batta, A. K., Salen, G., Arora, R., Shefer, S., Batta, M. & Person, A. (1990). Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. J Biol Chem 265, 10925-10928. [Google Scholar]
  5. Cheah, P. Y. (1990). Hypothesis for the etiology of colorectal cancer – an overview. Nutr Cancer 14, 5-13.[CrossRef] [Google Scholar]
  6. Christiaens, H., Leer, R. J., Pouwels, P. H. & Verstraete, W. (1992). Cloning and expression of a conjugated bile salt hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl Environ Microbiol 58, 3792-3798. [Google Scholar]
  7. Cole, C. B. & Fuller, R. (1974). Bile acid deconjugation and attachment of chicken gut bacteria: their possible role in growth depression. Br Poult Sci 25, 227-231. [Google Scholar]
  8. Coleman, J. P. & Hudson, L. L. (1995). Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl Environ Microbiol 61, 2514-2520. [Google Scholar]
  9. Dashkevicz, M. P. & Feighner, S. D. (1989). Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol 55, 11-16. [Google Scholar]
  10. De Smet, I., Van Hoorde, L., De Saeyer, N., Vande Woestyne, M. & Verstraete, W. (1994).In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb Ecol Health Dis 7, 315-329.[CrossRef] [Google Scholar]
  11. De Smet, I., Van Hoorde, L., Vande Woestyne, M., Christiaens, H. & Verstraete, W. (1995). Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79, 292-301.[CrossRef] [Google Scholar]
  12. Edgell, D. R., Belfort, M. & Shub, D. A. (2000). Barriers to intron promiscuity in bacteria. J Bacteriol 182, 5281-5289.[CrossRef] [Google Scholar]
  13. Edwards, J. B. D. M., Ravassard, P., Icard-Liepkalns, C. & Mallet, J. (1995). cDNA cloning by RT-PCR. In PCR 2: a Practical Approach , pp. 89-118. Edited by M. J. McPherson, B. D. Hames & G. R. Taylor. New York:Oxford University Press.
  14. Elkins, C. A. & Savage, D. C. (1998). Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J Bacteriol 180, 4344-4349. [Google Scholar]
  15. Eyssen, H. & deSomer, P. (1963). The mode of action of antibiotics in stimulating growth of chicks. J Exp Med 117, 127-138.[CrossRef] [Google Scholar]
  16. Gilliland, S. E. & Speck, M. L. (1977). Deconjugation of bile acids by intestinal lactobacilli. Appl Environ Microbiol 33, 15-18. [Google Scholar]
  17. Gopal-Srivastava, R. & Hylemon, P. B. (1988). Purification and characterization of a bile salt hydrolase from Clostridium perfringens. J Lipid Res 29, 1079-1085. [Google Scholar]
  18. Grill, J.-P., Schneider, F., Crociani, J. & Ballongue, J. (1995). Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl Environ Microbiol 61, 2577-2582. [Google Scholar]
  19. Hylemon, P. B. & Harder, J. (1999). Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev 22, 475-488. [Google Scholar]
  20. Kandell, R. L. & Bernstein, C. (1991). Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer 16, 227-238.[CrossRef] [Google Scholar]
  21. Kawamoto, K., Horibe, I. & Uchida, K. (1989). Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus. J Biochem 106, 1049-1053. [Google Scholar]
  22. Kay, R. M. (1981). Effects of diet on the fecal excretion and bacterial modification of acidic and neutral steroids, and implications for colon carcinogenesis. Cancer Res 41, 3774-3777. [Google Scholar]
  23. Kishinaka, M., Umeda, A. & Kuroki, S. (1994). High concentrations of conjugated bile acids inhibit bacterial growth of Clostridium perfringens and induce its extracellular cholylglycine hydrolase. Steroids 59, 485-489.[CrossRef] [Google Scholar]
  24. Lundeen, S. G. & Savage, D. C. (1990). Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J Bacteriol 172, 4171-4177. [Google Scholar]
  25. Lundeen, S. G. & Savage, D. C. (1992a). Multiple forms of bile salt hydrolase from Lactobacillus sp. strain 100-100. J Bacteriol 174, 7217-7220. [Google Scholar]
  26. Lundeen, S. G. & Savage, D. C. (1992b). Characterization of an extracellular factor that stimulates bile salt hydrolase activity in Lactobacillus sp. strain 100-100. FEMS Microbiol Lett 94, 121-126.[CrossRef] [Google Scholar]
  27. Min, G. & Powell, J. R. (1998). Long-distance genome walking using the long and accurate polymerase chain reaction. Biotechniques 24, 398-400. [Google Scholar]
  28. Moser, S. A. & Savage, D. C. (2001). Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol 67, 3476-3480.[CrossRef] [Google Scholar]
  29. Saier, M. H., Jr, Beatty, J. T., Goffeau, A. & 11 other authors (1999). The major facilitator superfamily. J Mol Microbiol Biotechnol 2, 257–279. [Google Scholar]
  30. Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107-133.[CrossRef] [Google Scholar]
  31. Savage, D. C. (2000). Probiotic bacteria in the gastrointestinal environment: factors influencing their survival and colonization. Biosci Microflora 19, 9-14.[CrossRef] [Google Scholar]
  32. Savage, D. C., Lundeen, S. G. & O’Connor, L. T. (1995). Mechanisms by which indigenous microorganisms colonise epithelial surfaces as a reservoir of the lumenal microflora in the gastrointestinal tract. Microecol Ther 21, 27-36. [Google Scholar]
  33. Stellwag, E. J. & Hylemon, P. B. (1976). Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim Biophys Acta 452, 165-176.[CrossRef] [Google Scholar]
  34. Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. (2000). Bile salt hydrolase of Bifidobacterium longum – biochemical and genetic characterization. Appl Environ Microbiol 66, 2502-2512.[CrossRef] [Google Scholar]
  35. Thanassi, D. G., Cheng, L. W. & Nikaido, H. (1997). Active efflux of bile salts by Escherichia coli. J Bacteriol 179, 2512-2518. [Google Scholar]
  36. Weber, B. A., Klein, J. R. & Henrich, B. (1998). The arbZ gene from Lactobacillus delbrueckii subsp. lactis confers to Escherichia coli the ability to utilize the β-glucoside arbutin. Gene 212, 203-211.[CrossRef] [Google Scholar]
  37. Wong, M. H., Oelkers, P., Craddock, A. L. & Dawson, P. A. (1994). Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 269, 1340-1347. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-12-3403
Loading
/content/journal/micro/10.1099/00221287-147-12-3403
Loading

Data & Media loading...

Most cited Most Cited RSS feed