The filamentous hemiascomycete is a strong riboflavin overproducer. A striking but as yet uninvestigated phenomenon is the fact that the overproduction of this vitamin starts when growth rate declines, which means that most of the riboflavin is produced in the stationary phase, the so-called production phase. The specific activity of 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase, the first enzyme in the biosynthetic pathway for riboflavin, was determined during cultivation and an increase during the production phase was found. Furthermore, an increase of mRNA, encoding DHBP synthase, was observed by competitive RT-PCR in the production phase. The mRNAs of two housekeeping genes, (encoding actin) and (encoding translation elongation factor-1α), served as standards in the RT-PCR. Reporter studies with a promoter– fusion showed an increase of β-galactosidase specific activity in the production phase. This investigation verified that the increase of mRNA in the production phase is caused by an induction of promoter activity. These data suggest that the time course of riboflavin overproduction of is correlated with a transcriptional regulation of the DHBP synthase.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ashby, S. F. & Nowell, N. (1926). The fungi of stigmatomycosis. Ann Botany 40, 69-83. [Google Scholar]
  2. Bacher, A. (1991). Biosynthesis of flavins. In Chemistry and Biochemistry of Flavoenzymes , pp. 215-259. Edited by F. Müller. Boston:CRC Press.
  3. Bacher, A., Le Van, Q. & Bühler, M. (1982). Biosynthesis of riboflavin. Incorporation of d-[1-13C]ribose. J Am Chem Soc 104, 3754-3755.[CrossRef] [Google Scholar]
  4. Bacher, A., Le Van, Q., Keller, P. J. & Floss, H. G. (1983). Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring. J Biol Chem 258, 13431-13437. [Google Scholar]
  5. Bacher, A., Le Van, Q., Keller, P. J. & Floss, H. G. (1985). Biosynthesis of riboflavin. Incorporation of multiply 13C-labeled precursors into the xylene ring. J Am Chem Soc 107, 6380-6385.[CrossRef] [Google Scholar]
  6. Bacher, A., Eberhardt, S., Fischer, M., Kis, K. & Richter, G. (2000). Biosynthesis of vitamin B2 (Riboflavin). Annu Rev Nutr 20, 153-167.[CrossRef] [Google Scholar]
  7. Bigelis, R. (1989). Industrial products of biotechnology: application of gene technology. In Biotechnology , pp. 243. Edited by H. J. Rehm & G. Reed. Weinheim:VCH.
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef] [Google Scholar]
  9. Brakhage, A. A., Browne, P. & Turner, G. (1992). Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174, 3789-3799. [Google Scholar]
  10. Carlson, M. (1999). Glucose repression in yeast. Curr Opin Microbiol 2, 202-207.[CrossRef] [Google Scholar]
  11. Gancedo, J. M. (1998). Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62, 334-361. [Google Scholar]
  12. Gruber, A. D. & Levine, R. A. (1997).In situ assessment of mRNA accessibility in heterogeneous tissue samples using elongation factor-1α (EF-1α). Histochem Cell Biol 107, 411-416.[CrossRef] [Google Scholar]
  13. Guilliermond, P. (1928). Recherches sur quelques Ascomycetes inferieurs isoles de la stigmatomycose des graines de cotonnier. Essai sur la phylogenie des Ascomycetes. Rev Gen Bot 40, 328-342. [Google Scholar]
  14. Hanahan, D. (1985). Techniques for transformation of E. coli. In DNA CloningA Practical Approach , pp. 109-135. Edited by D. M. Glover. Oxford:IRL Press.
  15. Herz, S., Eberhardt, S. & Bacher, A. (2000). Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53, 723-731.[CrossRef] [Google Scholar]
  16. Hohn, T. M., Desjardins, A. E. & McCormick, S. P. (1993). Analysis of Tox5 gene expression in Gibberella pulicaris strains with different trichothecene production phenotypes. Appl Environ Microbiol 59, 2359-2363. [Google Scholar]
  17. Hmbelin, M., Griesser, V., Keller, T. & 7 other authors (1999). GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Indust Microbiol Biotechnol 22, 1–7.[CrossRef] [Google Scholar]
  18. Jekosch, K. & Kück, U. (2000). Loss of glucose repression in an Acremonium chrysogenum β-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol 54, 556-563.[CrossRef] [Google Scholar]
  19. Kalnins, A., Otto, K., Rüther, U. & Müller-Hill, B. (1983). Sequence of the lacZ gene of Escherichia coli. EMBO J 2, 593-597. [Google Scholar]
  20. Keller, N. P. & Hohn, T. M. (1997). Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21, 17-29.[CrossRef] [Google Scholar]
  21. Kennedy, M. A., Barbuch, R. & Bard, M. (1999). Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.Biochim Biophys Acta 1445, 110-122.[CrossRef] [Google Scholar]
  22. Kurth, R., Philippsen, P., Steiner, S. & Wright, M. C. (1992). New promoter region. Patent no. WO 92/00379.
  23. Liao, D.-I., Viitanen, P. V. & Jordan, D. B. (2000). Cloning, expression, purification and crystallization of dihydroxybutanone phosphate synthase from Magnaporthe grisea.Acta Crystallogr D Biol Crystallogr 56, 1495-1497.[CrossRef] [Google Scholar]
  24. Mack, M., van Loon, A. P. G. M. & Hohmann, H.-P. (1998). Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.J Bacteriol 180, 950-955. [Google Scholar]
  25. Maeting, I., Schmidt, G., Sahm, H., Revuelta, J. L., Stierhof, Y.-D. & Stahmann, K.-P. (1999). Isocitrate lyase of Ashbya gossypii – transcriptional regulation and peroxisomal localization. FEBS Lett 444, 15-21.[CrossRef] [Google Scholar]
  26. Miller, J. H. (1972).Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Mironov, V. N., Kraev, A. S., Chikindas, M. L., Chernov, B. K., Stepanov, A. I. & Skryabin, K. G. (1994). Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw. Mol Gen Genet 242, 201-208.[CrossRef] [Google Scholar]
  28. Monschau, N., Sahm, H. & Stahmann, K.-P. (1998). Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii.Appl Environ Microbiol 64, 4283-4290. [Google Scholar]
  29. Pfeifer, V. F., Tanner, F. W., Vojnovich, C. & Traufler, D. H. (1950). Riboflavin by fermentation with Ashbya gossypii.Indust Eng Chem 42, 1776-1781.[CrossRef] [Google Scholar]
  30. Phaff, H. J. & Starmer, W. T. (1987). Yeasts associated with plants, insects and soil. In The Yeasts , pp. 123-174. Edited by A. H. Rose & J. S. Harrison. London:Academic Press.
  31. Plaut, G. W. E. (1954). Biosynthesis of riboflavin. II: Incorporation of 14C-labeled compounds into ring A. J Biol Chem 211, 111-116. [Google Scholar]
  32. Revilla, G., López-Nieto, M. J., Luengo, J. M. & Martı́n, J. F. (1984). Carbon catabolite repression of penicillin biosynthesis by Penicillium crysogenum.J Antibiot 37, 781-789.[CrossRef] [Google Scholar]
  33. Revilla, G., Ramos, F. R., López-Nieto, M. J., Alvarez, E. & Martı́n, J. F. (1986). Glucose represses formation of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine and isopenicillin N synthase but not penicillin acetyltransferase in Penicillium chrysogenum.J Bacteriol 168, 947-952. [Google Scholar]
  34. Revuelta, J. L., Buitrago, M. J. & Santos, M. A. (1995). Riboflavin biosynthesis in fungi. Patent no. WO 95/26406.
  35. Richter, G., Volk, R., Krieger, C., Lahm, H.-W., Röthlisberger, U. & Bacher, A. (1992). Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phoshate synthase of Escherichia coli.J Bacteriol 174, 4050-4056. [Google Scholar]
  36. Richter, G., Ritz, H., Katzenmeier, G., Volk, R., Kohnle, A., Lottspeich, F., Allendorf, D. & Bacher, A. (1993). Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli.J Bacteriol 175, 4045-4051. [Google Scholar]
  37. Robinson, G. W., Tsay, Y. H., Kienzle, B. K., Smith-Monroy, C. A. & Bishop, R. W. (1993). Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol Cell Biol 13, 2706-2717. [Google Scholar]
  38. Ronne, H. (1995). Glucose repression in fungi. Trends Genet 11, 12-17.[CrossRef] [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Schmidt, G., Stahmann, K.-P., Kaesler, B. & Sahm, H. (1996). Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii.Microbiology 142, 419-426.[CrossRef] [Google Scholar]
  41. Solovieva, I. M., Kreneva, R. A., Leak, D. J. & Perumov, D. A. (1999). The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiology 145, 67-73.[CrossRef] [Google Scholar]
  42. Stahmann, K.-P., Kupp, C., Feldmann, S. D. & Sahm, H. (1994). Formation and degradation of lipid bodies found in the riboflavin-producing fungus Ashbya gossypii. Appl Microbiol Biotechnol 42, 121-127.[CrossRef] [Google Scholar]
  43. Stahmann, K.-P., Revuelta, J. L. & Seulberger, H. (2000). Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53, 509-516.[CrossRef] [Google Scholar]
  44. Steiner, S. & Philippsen, P. (1994). Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii.Mol Gen Genet 242, 263-271.[CrossRef] [Google Scholar]
  45. Steiner, S., Wendland, J., Wright, M. C. & Philippsen, P. (1995). Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii.Genetics 140, 973-987. [Google Scholar]
  46. Suzuki, T., Higgins, P. J. & Crawford, D. R. (2000). Control selection for RNA quantitation. BioTechniques 29, 332-337. [Google Scholar]
  47. Tansey, T. R. & Shechter, I. (2000). Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta 1529, 49-62.[CrossRef] [Google Scholar]
  48. Volk, R. & Bacher, A. (1988). Biosynthesis of riboflavin. The structure of the four-carbon precursor. J Am Chem Soc 110, 3651-3653.[CrossRef] [Google Scholar]
  49. Volk, R. & Bacher, A. (1990). Studies on the 4-carbon precursor in the biosynthesis of riboflavin. J Biol Chem 265, 19479-19485. [Google Scholar]
  50. Wickerham, L. J., Flickinger, M. H. & Johnston, R. M. (1946). The production of riboflavin by Ashbya gossypii.Arch Biochem 9, 95-98. [Google Scholar]
  51. Wright, M. C. & Philippsen, P. (1991). Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109, 99-105.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error