cleavage enzyme gene is necessary for testosterone degradation in TA441 Free

Abstract

metabolizes testosterone as the sole carbon source via a cleavage reaction. A -cleavage enzyme gene, , was cloned from TA441. The deduced N-terminal amino acid sequence of matched that of the purified -cleavage enzyme which is induced in TA441 during growth on testosterone as the sole carbon source. The disrupted mutant did not show growth on testosterone, suggesting that is necessary for TA441 to grow on testosterone. Downstream from , three putative ORFs which encode products also necessary for growth of TA441 on testosterone were identified. The usual substrate of TesB is probably 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione. Although this compound was not identified in the gene disrupted mutants, accumulation of upstream metabolites of testosterone degradation, 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione, was shown by TLC analysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-12-3367
2001-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/12/1473367a.html?itemId=/content/journal/micro/10.1099/00221287-147-12-3367&mimeType=html&fmt=ahah

References

  1. Abalain, J. H., Di Stefano, S., Amet, Y., Quemener, E., Abalain-Colloc, M. L. & Floch, H. H. (1993). Cloning, DNA sequencing and expression of (3–17)β-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. J Steroid Biochem Mol Biol 44, 133-139.[CrossRef] [Google Scholar]
  2. Abalain, J. H., Di Stefano, S., Abalain-Colloc, M. L. & Floch, H. H. (1995). Cloning, sequencing and expression of Pseudomonas testosteroni gene encoding 3α-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 55, 233-238.[CrossRef] [Google Scholar]
  3. Arai, H., Akahira, S., Ohishi, T., Maeda, M. & Kudo, T. (1998). Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144, 2895-2903.[CrossRef] [Google Scholar]
  4. Arai, H., Yamamoto, T., Ohishi, T., Shimizu, T., Nakata, T. & Kudo, T. (1999). Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology 145, 2813-2820. [Google Scholar]
  5. Asturias, J. A., Eltis, L. D., Prucha, M. & Timmis, K. N. (1994). Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6: identification of a new family of extradiol dioxygenases. J Biol Chem 269, 7807-7815. [Google Scholar]
  6. Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513-1523.[CrossRef] [Google Scholar]
  7. Choi, K. Y. & Benisek, W. F. (1988). Nucleotide sequence of the gene for the Δ5–3-ketosteroid isomerase of Pseudomonas testosteroni. Gene 69, 121-129.[CrossRef] [Google Scholar]
  8. Coulter, A. W. & Talalay, P. (1968). Studies on the microbial degradation of steroid ring A. J Biol Chem 243, 3238-3247. [Google Scholar]
  9. Dayhoff, M. O., Schwarts, R. M. & Orcutt, B. C. (1978). A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure , pp. 345-352. Edited by M. O. Dayhoff. Washington, DC:National Biomedical Research Foundation.
  10. Eichler, K., Bourgis, F., Buchet, A., Kleber, H. P. & Mandrand-Berthelot, M. A. (1994). Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol 13, 775-786.[CrossRef] [Google Scholar]
  11. Florin, C., Kohler, T., Grandguillot, M. & Plesiat, P. (1996).Comamonas testosteroni 3-ketosteroid-Δ4(5α)-dehydrogenase: gene and protein characterization. J Bacteriol 178, 3322-3330. [Google Scholar]
  12. Furukawa, K., Arimura, N. & Miyazaki, T. (1987). Nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene of Pseudomonas pseudoalcaligenes.J Bacteriol 169, 427-429. [Google Scholar]
  13. Genti-Raimondi, S., Tolmasky, M. E., Patrito, L. C., Flury, A. & Actis, L. A. (1991). Molecular cloning and expression of the β-hydroxysteroid dehydrogenase gene from Pseudomonas testosteroni.Gene 105, 43-49.[CrossRef] [Google Scholar]
  14. Han, S., Eltis, L. D., Timmis, K. N., Muchmore, S. W. & Bolin, J. T. (1995). Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 270, 976-980.[CrossRef] [Google Scholar]
  15. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.[CrossRef] [Google Scholar]
  16. Higgins, D. G. & Sharp, P. M. (1989). Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 5, 151-153. [Google Scholar]
  17. Hofer, B., Eltis, L. D., Dowling, D. N. & Timmis, K. N. (1993). Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130, 47-55.[CrossRef] [Google Scholar]
  18. Jacob, U., Mack, M., Clausen, T., Huber, R., Buckel, W. & Messerschmidt, A. (1997). Glutaconate CoA-transferase from Acidaminococcus fermentans: the crystal structure reveals homology with other CoA-transferases. Structure 5, 415-426.[CrossRef] [Google Scholar]
  19. Kimbara, K., Hashimoto, T., Fukuda, M., Koana, T., Takagi, M., Oishi, M. & Yano, K. (1989). Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol 171, 2740-2747. [Google Scholar]
  20. Kosono, S., Maeda, M., Fuji, F., Arai, H. & Kudo, T. (1997). Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 63, 3282-3285. [Google Scholar]
  21. Kulakov, L. A., Delcroix, V. A., Larkin, M. J., Ksenzenko, V. N. & Kulakova, A. N. (1998). Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains. Microbiology 144, 955-963.[CrossRef] [Google Scholar]
  22. Kuliopulos, A., Shortle, D. & Talalay, P. (1987). Isolation and sequencing of the gene encoding Δ5–3-ketosteroid isomerase of Pseudomonas testosteroni: overexpression of the protein. Proc Natl Acad Sci USA 84, 8893-8897.[CrossRef] [Google Scholar]
  23. Mack, M., Bendrat, K., Zelder, O., Eckel, E., Linder, D. & Buckel, W. (1994). Location of the two genes encoding glutaconate coenzyme A-transferase at the beginning of the hydroxyglutarate operon in Acidaminococcus fermentans.Eur J Biochem 226, 41-51.[CrossRef] [Google Scholar]
  24. Miller, J. H. (1992).A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Möbus, E. & Maser, E. (1998). Molecular cloning, overexpression, and characterization of steroid-inducible 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: a novel member of the short-chain dehydrogenase/reductase superfamily. J Biol Chem 273, 30888-30896.[CrossRef] [Google Scholar]
  26. Möbus, E., Jahn, M., Schmid, R., Jahn, D. & Maser, E. (1997). Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni.J Bacteriol 179, 5951-5955. [Google Scholar]
  27. Plesiat, P., Grandguillot, M., Harayama, S., Vragar, S. & Michel-Briand, Y. (1991). Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid Δ1-dehydrogenase. J Bacteriol 173, 7219-7227. [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor laboratory.
  29. Sato, S., Ouchiyama, N., Kimura, T., Nojiri, H., Yamane, H. & Omori, T. (1997). Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 179, 4841-4849. [Google Scholar]
  30. Sih, C. J., Lee, S. S., Tsong, Y. Y. & Wang, K. C. (1966). Mechanisms of steroid oxidation by microorganisms. VIII. 3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, an intermediate in the microbiological degradation of ring A of androst-4-ene-3,17-dione. J Biol Chem 241, 540-550. [Google Scholar]
  31. Vieira, J. & Messing, J. (1987). Production of single-stranded plasmid DNA. Methods Enzymol 153, 3-11. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-12-3367
Loading
/content/journal/micro/10.1099/00221287-147-12-3367
Loading

Data & Media loading...

Most cited Most Cited RSS feed