was investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Polyhydroxyalkanoate (PHA) accumulation contributing to approximately 18% of the cell dry weight was obtained in the presence of glucose. Gas chromatography–mass spectrometry and gel permeation chromatography of the purified PHA showed that this polyester was solely composed of 3-hydroxybutyrate and had a weight average molar mass of 55×10 g mol and a polydispersity of 16. An ORF encoding a conserved, hypothetical protein which shared approximately 47% identity with the PHB synthase from was identified within the complete genomic sequence. This putative PHB synthase gene, , consisted of a 2019 nt stretch of DNA (encoding 673 aa residues), which encoded a PHB synthase with a molecular mass of approximately 73 kDa. This is currently the largest PHA synthase identified. The coding region was subcloned into vector pBBR1-JO2 under promoter control. The resulting plasmid, pQQ4, mediated PHB accumulation in the mutant PHB4 and recombinant JM109(pBHR69), which produced the β-ketothiolase and acetoacetyl-CoA reductase from , contributing to approximately 62% and 6% of cell dry weight, respectively. Functional expression of the coding region of was confirmed by immunoblotting and PHB synthase activity.


Article metrics loading...

Loading full text...

Full text loading...



  1. Brandl, H., Gross, R. A., Lenz, R. W. & Fuller, R. C. (1988).Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54, 1977-1982. [Google Scholar]
  2. Fiedler, S., Steinbüchel, A. & Rehm, B. H. A. (2000). PhaG-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol 66, 2117-2124.[CrossRef] [Google Scholar]
  3. Friedrich, B., Hogrefe, C. & Schlegel, H. G. (1981). Naturally-occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147, 198-205. [Google Scholar]
  4. Fukui, T., Shiomi, N. & Doi, Y. (1998). Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180, 667-673. [Google Scholar]
  5. Gerngross, T. U., Snell, K. D., Peoples, O. P., Sinskey, A. J., Csuhai, E., Masamune, M. & Stubbe, J. (1994). Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus – evidence for a required posttranslational modification for catalytic activity. Biochemistry 33, 9311-9320.[CrossRef] [Google Scholar]
  6. Handrick, R., Reinhardt, S. & Jendrossek, D. (2000). Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.J Bacteriol 182, 5916-5918.[CrossRef] [Google Scholar]
  7. Haywood, G. W., Anderson, A. J., Williams, G. A., Dawes, E. A. & Ewing, D. F. (1991). Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13, 83-88.[CrossRef] [Google Scholar]
  8. Hoffmann, N., Steinbüchel, A. & Rehm, B. H. A. (2000a). The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184, 253-259.[CrossRef] [Google Scholar]
  9. Hoffmann, N., Steinbüchel, A. & Rehm, B. H. A. (2000b). Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54, 665-670.[CrossRef] [Google Scholar]
  10. Hoppensack, A., Rehm, B. H. A. & Steinbüchel, A. (1999). Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region. J Bacteriol 181, 1429-1435. [Google Scholar]
  11. Jia, Y., Kappock, T. J., Frick, T., Sinskey, A. J. & Stubbe, J. (2000). Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39, 3927-3936.[CrossRef] [Google Scholar]
  12. Jia, Y., Yuan, W., Wodzinska, J., Park, C., Sinskey, A. J. & Stubbe, J. (2001). Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry 40, 1011-1019.[CrossRef] [Google Scholar]
  13. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. & Peterson, K. M. (1995). 4 new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176.[CrossRef] [Google Scholar]
  14. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef] [Google Scholar]
  15. Langenbach, S., Rehm, B. H. A. & Steinbüchel, A. (1997). Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150, 303-309.[CrossRef] [Google Scholar]
  16. Liebergesell, M., Sonomoto, I. L., Madkour, M., Mayer, F. & Steinbüchel, A. (1994). Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur J Biochem 226, 71-80.[CrossRef] [Google Scholar]
  17. Mak, Y. M. & Ho, K. K. (1993). An improved procedure for direct phenol extraction of single-stranded M13-DNA for sequencing. Biotechniques 14, 732-734. [Google Scholar]
  18. Nierman, W. C., Feldblyum, T. V., Laub, M. T. & 34 other authors (2001). Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98, 4136–4141.[CrossRef] [Google Scholar]
  19. Peoples, O. P. & Sinskey, A. J. (1989a). Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16 – characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase.J Biol Chem 264, 15293-15297. [Google Scholar]
  20. Peoples, O. P. & Sinskey, A. J. (1989b). Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16 – identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264, 15298-15303. [Google Scholar]
  21. Poindexter, J. S. (1981). The Caulobacters – ubiquitous unusual bacteria. Microbiol Rev 45, 123-179. [Google Scholar]
  22. Qi, Q. S., Rehm, B. H. A. & Steinbüchel, A. (1997). Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 157, 155-162.[CrossRef] [Google Scholar]
  23. Qi, Q. S., Steinbüchel, A. & Rehm, B. H. A. (1998). Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol Lett 167, 89-94. [Google Scholar]
  24. Qi, Q., Steinbüchel, A. & Rehm, B. H. A. (2000).In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa.Appl Microbiol Biotechnol 54, 37-43.[CrossRef] [Google Scholar]
  25. Rehm, B. H. A. & Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25, 3-19.[CrossRef] [Google Scholar]
  26. Rehm, B. H. A. & Steinbüchel, A. (2001a). Heterologous expression of the acyl–acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli. Appl Microbiol Biotechnol 55, 205-209.[CrossRef] [Google Scholar]
  27. Rehm, B. H. A. & Steinbüchel, A. (2001b). PHA synthases – the key enzymes of PHA synthesis. In Handbook ‘Biopolymers’. Edited by A. Steinbüchel & Y. Doi. Weinheim: Wiley–VCH (in press).
  28. Rehm, B. H. A., Krüger, N. & Steinbüchel, A. (1998). A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis – the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl–acyl carrier protein coenzyme A transferase. J Biol Chem 273, 24044-24051.[CrossRef] [Google Scholar]
  29. Rehm, B. H. A., Qi, Q. S., Beermann, B. B., Hinz, H.-J. & Steinbüchel, A. (2001a). Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem J 358, 263-268.[CrossRef] [Google Scholar]
  30. Rehm, B. H. A., Hoffmann, N., Qi, Q., Fiedler, S. & Steinbüchel, A. (2001b). Biosynthesis of latex-like polyhydroxyalkanoates. In Proceedings of the International Symposium on Bioconversion of Renewable Raw Materials. Braunschweig, Germany: GBF (in press).
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Schlegel, H. G., Lafferty, R. & Krauss, I. (1970). The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. Arch Microbiol 71, 283-294. [Google Scholar]
  33. Schubert, P., Steinbüchel, A. & Schlegel, H. G. (1988). Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170, 5837-5847. [Google Scholar]
  34. Schubert, P., Krüger, N. & Steinbüchel, A. (1991). Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthetic operon – identification of the N-terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173, 168-175. [Google Scholar]
  35. Simon, R., Priefer, U. & Pühler, A. (1983). A broad host range mobilization system for in vivo gentetic engineering – transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1, 784-791.[CrossRef] [Google Scholar]
  36. Spiekermann, P., Rehm, B. H. A., Kalscheuer, R., Baumeister, D. & Steinbüchel, A. (1999). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171, 73-80.[CrossRef] [Google Scholar]
  37. Valentin, H. E. & Steinbüchel, A. (1993). Cloning and characterization of the Methylobacterium extorquens polyhydroxyalkanoic-acid-synthase structural gene. Appl Microbiol Biotechnol 39, 309-317. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error