Antigenic profiles of mono-, bi- and poly-specific monoclonal antibodies against 90 kDa polymorphic outer-membrane proteins (POMPs) and a 105 kDa POMP-related protein of ATCC VR 656, after one- and two-dimensional electrophoretic analysis, helped identify each one of the triplets POMP 90, 91A and 91B, and a POMP-related protein at 85 kDa. The lectin concanavalin A bound to the four POMPs and the POMP-related protein in a specific manner and the binding was sensitive to treatment with the amidase -endoglycosidase F, suggesting the presence of small asparagine-linked oligosaccharide chains. The exposure of the five proteins on the chlamydial surface and the orientation of the attached oligosaccharide chains was examined by protease and endoglycosidase treatments of intact bacteria. The results were consistent with the concept that some of the oligosaccharides in the POMPs face outwards, possibly protecting the polypeptides from proteolytic enzymes, whereas the oligosaccharides in the 105 kDa POMP-related protein are oriented inwards, thereby rendering the polypeptide chain accessible to proteases. A possible role for the -linked oligosaccharides in the POMPs might be the promotion of the proper folding and processing of these proteins.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bose, S. K., Smith, G. B. & Paul, R. G. (1983). Influence of lectins, hexoses, and neuraminidase on the association of purified elementary bodies of Chlamydia trachomatis UW-31 with HeLa cells. Infect Immun 40, 1060-1067. [Google Scholar]
  2. Cevenini, R., Moroni, A., Sambri, V., Perini, S. & La Placa, M. (1989). Serological response to chlamydial infection in sheep, studied by enzyme-linked immunosorbent assay and immunoblotting. FEMS Microbiol Immunol 47, 459-464.[CrossRef] [Google Scholar]
  3. Christiansen, G., Pedersen, A. S., Hjerno, K., Vandahl, B. & Birkelund, S. (2000). Potential relevance of Chlamydia pneumoniae surface proteins to an effective vaccine. J Infect Dis 181, S528-S537.[CrossRef] [Google Scholar]
  4. Everett, K. D. E., Bush, R. M. & Andersen, A. A. (1999). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49, 415-440.[CrossRef] [Google Scholar]
  5. Giannikopoulou, P., Bini, L., Simitsek, P. D., Pallini, V. & Vretou, E. (1997). Two-dimensional electrophoretic analysis of the protein family at 90 kDa of abortifacient Chlamydia psittaci. Electrophoresis 18, 2104-2108.[CrossRef] [Google Scholar]
  6. Goswami, P. C., Vretou, E. & Bose, S. K. (1990). Extensive heterogeneity of the protein composition of Chlamydia trachomatis following serial passage in two different cell lines. J Gen Microbiol 136, 1623-1629.[CrossRef] [Google Scholar]
  7. Goswami, P. C., Vretou, E. & Bose, S. K. (1991). Host passage-dependent wheat germ agglutinin-binding proteins of Chlamydia trachomatis. FEMS Microbiol Lett 81, 53-56.[CrossRef] [Google Scholar]
  8. Grimwood, J. & Stephens, R. S. (1999). Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae.Microb Comp Genomics 4, 187-201.[CrossRef] [Google Scholar]
  9. Helenius, A. & Aebi, M. (2001). Intracellular functions of N-linked glycans. Science 291, 2364-2369.[CrossRef] [Google Scholar]
  10. Kalman, S., Mitchell, W., Marathe, R. & 7 other authors (1999). Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21, 385–389.[CrossRef] [Google Scholar]
  11. Lechner, J. & Wieland, F. (1989). Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem 58, 173-194.[CrossRef] [Google Scholar]
  12. Longbottom, D., Russell, M., Jones, G. E., Lainson, F. A. & Herring, A. J. (1996). Identification of a multigene family encoding the 90 kDa proteins of the ovine abortion subtype of Chlamydia psittaci. FEMS Microbiol Lett 142, 277-281.[CrossRef] [Google Scholar]
  13. Longbottom, D., Russell, M., Dunbar, S. M., Jones, G. E. & Herring, A. J. (1998a). Molecular cloning and characterization of the genes encoding the highly immunogenic cluster at 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect Immun 66, 1317-1324. [Google Scholar]
  14. Longbottom, D., Findlay, J., Vretou, E. & Dunbar, S. M. (1998b). Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol Lett 164, 111-117.[CrossRef] [Google Scholar]
  15. Messner, P. & Sleytr, U. B. (1991). Bacterial surface layer glycoproteins. Glycobiology 1, 545-551.[CrossRef] [Google Scholar]
  16. Schäffer, C., Graninger, M. & Messner, P. (2001). Prokaryotic glycosylation. Proteomics 1, 248-251.[CrossRef] [Google Scholar]
  17. Souriau, A., Salinas, J., De Sa, C., Layashi, K. & Rodolakis, A. (1994). Identification of subspecies- and serotype 1-specific epitopes on the 80- to 90-kilodalton protein region of Chlamydia psittaci that may be useful for diagnosis of chlamydial induced abortion. Am J Vet Res 55, 510-514. [Google Scholar]
  18. Stephens, R. S. (editor) (1999).Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. Washington, DC: American Society for Microbiology.
  19. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors (1998). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759. [Google Scholar]
  20. Storz, J. (1971).Chlamydia and Chlamydia-induced Diseases. Springfield, IL: Charles C. Thomas.
  21. Swanson, A. F. & Kuo, C.-C. (1994). Binding of the glycan moiety of the major outer-membrane protein of Chlamydia trachomatis to HeLa cells. Infect Immun 62, 24-28. [Google Scholar]
  22. Tan, T. W., Herring, A. J., Anderson, I. E. & Jones, G. E. (1990). Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect Immun 58, 3101-3108. [Google Scholar]
  23. Tanzer, R. J., Longbottom, D. & Hatch, T. P. (2001). Identification of polymorphic outer membrane proteins of Chlamydia psittaci 6BC. Infect Immun 69, 2428-2434.[CrossRef] [Google Scholar]
  24. Vretou, E., Psarrou, E. & Spiliopoulou, D. (1992). The role of lipopolysaccharide in the exposure of protective antigenic sites on the major outer membrane protein of Chlamydia trachomatis. J Gen Microbiol 138, 1221-1227.[CrossRef] [Google Scholar]
  25. Vretou, E., Loutrari, H., Mariani, L. & 7 other authors (1996). Diversity among abortion strains of Chlamydia psittaci demonstrated by inclusion morphology, polypeptide profiles and monoclonal antibodies. Vet Microbiol 51, 275–289.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error