Preview this article:

There is no abstract available.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef] [Google Scholar]
  2. Anderson, L. B., Hertzel, A. V. & Das, A. (1996).Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci USA 93, 8889-8894.[CrossRef] [Google Scholar]
  3. Baron, C., Thorstenson, Y. R. & Zambryski, P. C. (1997). The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol 179, 1211-1218. [Google Scholar]
  4. Beaupre, C. E., Bohne, J., Dale, E. M. & Binns, A. N. (1997). Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179, 78-89. [Google Scholar]
  5. Berger, B. R. & Christie, P. J. (1994). Genetic complementation analysis of the Agrobacterium tumefaciens virB2 through virB11 are essential virulence genes. J Bacteriol 176, 3646-3660. [Google Scholar]
  6. Binet, R., Létoffé, S., Ghigo, J. M., Delepelaire, P. & Wandersman, C. (1997). Protein secretion by Gram-negative bacterial ABC exporters – a review. Gene 192, 7-11.[CrossRef] [Google Scholar]
  7. Bohne, J., Yim, A. & Binns, A. N. (1998). The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. Proc Natl Acad Sci USA 95, 7057-7062.[CrossRef] [Google Scholar]
  8. Burns, D. L. (1999). Biochemistry of type IV secretion. Curr Opin Microbiol 2, 25-29.[CrossRef] [Google Scholar]
  9. Christie, P. J. (1997).Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179, 3085-3094. [Google Scholar]
  10. Christie, P. J. (2001). Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40, 294-305.[CrossRef] [Google Scholar]
  11. Christie, P. J. & Vogel, J. P. (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8, 354-360.[CrossRef] [Google Scholar]
  12. Covacci, A. & Rappouli, R. (1993). Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon. Mol Microbiol 8, 429-434.[CrossRef] [Google Scholar]
  13. Covacci, A., Falkow, S., Berg, D. E. & Rappouli, R. (1997). Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pylori? Trends Microbiol 5, 205-208.[CrossRef] [Google Scholar]
  14. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. (1999).Helicobacter pylori virulence and genetic geography. Science 289, 1328-1333. [Google Scholar]
  15. de la Cruz, F. & Lanka, E. (1998). Function of the Ti plasmid Vir proteins: T-complex formation and transfer to the plant cell. In The Rhizobiaceae , pp. 281-301. Edited by H. P. Spaink, A. Kondorosi & P. J. J. Hooykasd. Dordrecht:Kluwer Academic Publishing.
  16. Cserzo, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. (1997). Prediction of transmembrane alpha-helices in prokaryotic membrane protein: the Dense Alignment Surface method. Prot Eng 10, 673-676.[CrossRef] [Google Scholar]
  17. Dang, T. A. T. & Christie, P. J. (1997). The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179, 453-462. [Google Scholar]
  18. Dang, T. A., Zhou, X.-R., Graf, B. & Christie, P. J. (1999). Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on assembly and function of the T-DNA transporter. Mol Microbiol 32, 1239-1253.[CrossRef] [Google Scholar]
  19. Das, A. & Xie, Y.-H. (1998). Construction of transposon Tn3phoA: its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol Microbiol 27, 405-414.[CrossRef] [Google Scholar]
  20. Das, A. & Xie, Y.-H. (2000). The Agrobacterium T-DNA transport pore proteins VirB8, VirB9 and VirB10 interact with one another. J Bacteriol 182, 758-763.[CrossRef] [Google Scholar]
  21. Devereux, J., Haeberli, P. & Smithies, N. O. (1984). A comprehensive set of sequence analyses for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef] [Google Scholar]
  22. Dreiseikelmann, B. (1994). Translocation of DNA across bacterial membranes. Microbiol Rev 58, 293-316. [Google Scholar]
  23. Feng, D.-F. & Doolittle, R. F. (1990). Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183, 375-387. [Google Scholar]
  24. Fernandez, L. A. & de Lorenzo, V. (2001). Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Mol Microbiol 40, 332-346.[CrossRef] [Google Scholar]
  25. Fernandez, D., Dang, T. A. T., Spudich, G. M., Zhou, Z.-R., Berger, B. & Christie, P. J. (1996a). The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178, 3156-3167. [Google Scholar]
  26. Fernandez, D., Spudich, G. M., Zhou, Z.-R. & Christie, P. J. (1996b). The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178, 3168-3176. [Google Scholar]
  27. Frost, L. S., Ippen-Ihler, K. & Skurray, R. A. (1994). Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58, 162-210. [Google Scholar]
  28. Fullner, K. J., Lara, J. C. & Nester, E. W. (1996). Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273, 1107-1109.[CrossRef] [Google Scholar]
  29. Gelvin, S. B. (2000).Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51, 223-256.[CrossRef] [Google Scholar]
  30. Gomis-Ruth, F. X., Moncalian, G., Perez-Luque, R., Gonzalez, A., Cabezon, E., de la Cruz, F. & Coll, M. (2001). The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637-641.[CrossRef] [Google Scholar]
  31. Hamilton, C. M., Lee, H., Li, P. L., Cook, D. M., Piper, K. R., von Bodman, S. B., Lanka, E., Ream, W. & Farrand, S. K. (2000). TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182, 1541-1548.[CrossRef] [Google Scholar]
  32. Hapfelmeier, S., Domke, N., Zambryski, P. C. & Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182, 4505-4511.[CrossRef] [Google Scholar]
  33. Hofmann, K. & Stoffel, W. (1993). Tmbase – a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 347, 166. [Google Scholar]
  34. Jack, D. L., Paulsen, I. T. & Saier, M. H.Jr (2000). The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146, 1797-1814. [Google Scholar]
  35. Jones, A. L., Shirasu, K. & Kado, C. I. (1994). The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of the VirB3 protein. J Bacteriol 176, 5255-5261. [Google Scholar]
  36. Jones, A. L., Lai, E.-M., Shirasu, K. & Kado, C. L. (1996). Suppression of mutant phenotypes of the Agrobacterium tumefaciens VirB11 ATPase by overproduction of VirB proteins. J Bacteriol 179, 5835-5842. [Google Scholar]
  37. Kuan, G., Dassa, E., Saurin, W., Hofnung, M. & Saier, M. H.Jr (1995). Phylogenic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol 146, 271-278.[CrossRef] [Google Scholar]
  38. Kuldau, G. A., De Vos, G., Owen, J., McCaffrey, G. & Zambryski, P. (1990). The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 221, 256-266.[CrossRef] [Google Scholar]
  39. Kumar, R. B. & Das, A. (2001). Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. J Bacteriol 183, 3636-3641.[CrossRef] [Google Scholar]
  40. Krause, S., Pansegrau, W., Lurz, R., de la Cruz, F. & Lanka, E. (2000). Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids RP4 and R388 and the cag pathogenicity island of Helicobacter pylori encode structurally and functionally related nucleoside triphosphate hydrolases. J Bacteriol 182, 2761-2770.[CrossRef] [Google Scholar]
  41. Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-132.[CrossRef] [Google Scholar]
  42. Lai, E. M. & Kado, C. I. (2000). The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8, 361-369.[CrossRef] [Google Scholar]
  43. Le, T., Tseng, T.-T. & Saier, M. H.Jr (1999). Flexible programs for the estimation of average amphipathicity of multiply aligned homologous proteins: application to integral membrane transport proteins. Mol Membr Biol 16, 173-179.[CrossRef] [Google Scholar]
  44. Lessl, M., Balzer, D., Pansegrau, W. & Lanka, E. (1992). Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J Biol Chem 267, 20471-20480. [Google Scholar]
  45. Li, P.-L., Hwang, I., Miyagi, H., True, H. & Farrand, S. K. (1999). Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181, 5033-5041. [Google Scholar]
  46. Masui, S., Sasaki, T. & Ishikawa, H. (2000). Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J Bacteriol 182, 6529-6531.[CrossRef] [Google Scholar]
  47. Nguyen, L., Paulsen, I. T., Tchieu, J., Hueck, C. J. & Saier, M. H.Jr (2000). Phylogenetic analyses of the constituents of type III protein secretion systems. J Mol Microbiol Biotechnol 2, 125-144. [Google Scholar]
  48. Nicosia, A., Perugini, M., Franzini, C. & 7 other authors (1986). Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci USA 83, 4631–4635.[CrossRef] [Google Scholar]
  49. Paulsen, I. T., Beness, A. M. & Saier, M. H.Jr (1997). Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143, 2685-2699.[CrossRef] [Google Scholar]
  50. Plano, G. V., Day, J. B. & Ferracci, F. (2001). Type III export: new uses for an old pathway. Mol Microbiol 40, 284-293.[CrossRef] [Google Scholar]
  51. Pugsley, A. P. (1993). The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57, 50-108. [Google Scholar]
  52. Ramarao, N., Gray-Owen, S. D., Backert, S. & Meyer, T. F. (2000).Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Mol Microbiol 37, 1389-1404.[CrossRef] [Google Scholar]
  53. Rashkova, S., Spudich, G. M. & Christie, P. J. (1997). Characterization of membrane protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 179, 583-591. [Google Scholar]
  54. Rashkova, S., Zhou, X. R., Chen, J. & Christie, P. J. (2000). Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase. J Bacteriol 182, 4137-4145.[CrossRef] [Google Scholar]
  55. Sagulenko, V., Sagulenko, E., Jakubowski, S., Spudich, E. & Christie, P. J. (2001). VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183, 3642-3651.[CrossRef] [Google Scholar]
  56. Saier, M. H.Jr (1994). Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58, 71-93. [Google Scholar]
  57. Saier, M. H.Jr (2000). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64, 354-411.[CrossRef] [Google Scholar]
  58. Sandkvist, M. (2001). Biology of type II secretion. Mol Microbiol 40, 271-283.[CrossRef] [Google Scholar]
  59. Schmidt-Eisenlohr, H., Domke, N. & Baron, C. (1999a). TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecular-weight structures in Escherichia coli. J Bacteriol 181, 5563-5571. [Google Scholar]
  60. Schmidt-Eisenlohr, H., Domke, N., Angerer, C., Wanner, G., Zambryski, P. C. & Baron, C. (1999b). Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181, 7485-7492. [Google Scholar]
  61. Segal, G., Purcell, M. & Shuman, H. A. (1998). Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci USA 95, 1669-1674.[CrossRef] [Google Scholar]
  62. Shirasu, K. & Kado, C. I. (1993). Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett 111, 287-294.[CrossRef] [Google Scholar]
  63. Shirasu, K., Koukolı́ková-Nicola, Z., Hihn, B. & Kado, C. I. (1994). An inner-membrane-associated virulence protein essential for T-DNA transfer from Agrobacterium tumefaciens to plants exhibits ATPase activity and similarities to conjugative transfer genes. Mol Microbiol 11, 581-588.[CrossRef] [Google Scholar]
  64. Spudich, G. M., Fernandez, D., Zhou, Z.-R. & Christie, P. J. (1996). Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci USA 93, 7512-7517.[CrossRef] [Google Scholar]
  65. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876-4882.[CrossRef] [Google Scholar]
  66. Thorstenson, Y. R., Kuldau, G. A. & Zambryski, P. C. (1993). Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens: implications for the formation of a T-DNA transport structure. J Bacteriol 175, 5233-5241. [Google Scholar]
  67. Tummuru, M. K. R., Sharma, S. A. & Blaser, M. J. (1995).Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol Microbiol 18, 867-876.[CrossRef] [Google Scholar]
  68. Tzfira, T., Rhee, Y., Chen, M.-H., Kunik, T. & Citovsky, V. (2000). Nucleic acid transport in plant–microbe interactions: the molecules that walk through the walls. Ann Rev Microbiol 54, 187-219.[CrossRef] [Google Scholar]
  69. Vergunst, A. C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C. M. T., Regensburg-Tuı̈nk, T. J. G. & Hooykaas, P. J. J. (2000). VirB-D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979-982.[CrossRef] [Google Scholar]
  70. Vogel, J. P., Andrews, H. L., Wong, S. K. & Isberg, R. R. (1998). Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873-876.[CrossRef] [Google Scholar]
  71. Ward, J. E., Dale, E. M., Nester, E. W. & Binns, A. N. (1990). Identification of a VirB10 protein aggregate in the inner membrane of Agrobacterium tumefaciens. J Bacteriol 172, 5200-5210. [Google Scholar]
  72. Weiss, A. A., Johnson, F. D. & Burns, D. L. (1993). Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 90, 2970-2974.[CrossRef] [Google Scholar]
  73. Winans, S. C., Burns, D. L. & Christie, P. J. (1996). Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol 4, 64-68.[CrossRef] [Google Scholar]
  74. Yeo, H. J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. (2000). Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6, 1461-1472.[CrossRef] [Google Scholar]
  75. Young, G. B., Jack, D. L., Smith, D. W. & Saier, M. H.Jr (1999). The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415, 306-322.[CrossRef] [Google Scholar]
  76. Zhai, Y. & Saier, M. H.Jr (2001a). A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 3, 285-286. [Google Scholar]
  77. Zhai, Y. & Saier, M. H.Jr (2001b). A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol 3, 501-502. [Google Scholar]
  78. Zhou, Z.-R. & Christie, P. J. (1997). Suppression of mutant phenotypes of the Agrobacterium tumefaciens VirB11 ATPase by overproduction of VirB proteins. J Bacteriol 179, 5835-5842. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error