Genetic polymorphism and taxonomic infrastructure of the species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters Free

Abstract

The species-complex includes populations of choice edible mushrooms, growing in the greater Mediterranean area in close association with different genera of plants of the family Apiaceae. Their distinct host-specialization served as the principal criterion for the discrimination of several taxa; however, the genetic relationships among the various ecotypes remain ambiguous. In the present study, 46 strains with a wide range of geographical origins were isolated from spp., , , and subsp. , and were subjected to isozyme and random amplified polymorphic DNA-PCR (RAPD) analysis. The 16 enzyme activities tested were controlled by 28 loci, 11 of which were monomorphic. Host-exclusive zymograms for the Aph (acid phosphatase) and Phe-1 (dopa-phenoloxidase) loci were obtained from strains associated with . Allele frequencies, genetic diversity and mean diversity were high for isolates from spp. and . In RAPD analysis, the use of five primers allowed the production of 45 (out of 48) polymorphic bands, while four molecular markers specific for the identification of strains growing on subsp. and were obtained. The strains produced 35 distinct electrophoretic types and 42 RAPD patterns, which independently permitted the separation of the fungal populations into five clusters in accordance with their host-specificity. In addition, the evaluation of the principal ecological and morphological characters provided further evidence for discriminating between growing on and the rest of the host-associated populations. The latter represent taxa at the varietal level: var. , var. and var. . The position of taxa of dubious validity, such as and , is discussed in relation to the new findings. All Mediterranean populations growing on umbellifers seem to have recently diverged through a sympatric speciation process, that is based on both intrinsic reproductive barriers and extrinsic ecogeographical factors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-11-3183
2001-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/11/1473183a.html?itemId=/content/journal/micro/10.1099/00221287-147-11-3183&mimeType=html&fmt=ahah

References

  1. Adams, R. P. & Demeke, T. (1993). Systematic relationships of Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42, 553-571.[CrossRef] [Google Scholar]
  2. Allendorf, F. W., Mitchell, N., Ryman, N. & Stahl, G. (1977). Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. Hereditas 86, 179-190. [Google Scholar]
  3. Assigbetse, K. B., Fernandez, D., Dubois, M. P. & Geiger, J. P. (1994). Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by random amplified polymorphic DNA (RAPD) analysis. Phytopathology 84, 622-626.[CrossRef] [Google Scholar]
  4. Backeljau, T., de Bruyn, L., de Wolf, H., Jordaens, K., van Dongen, S., Verhagen, R. & Winnepennickx, B. (1995). Random amplified polymorphic DNA (RAPD) and parsimony methods. Cladistics 11, 119-130.[CrossRef] [Google Scholar]
  5. Boisselier-Dubayle, M.-C. (1983). Taxonomic significance of enzyme polymorphism among isolates of Pleurotus (Basidiomycetes) from Umbellifers. Trans Br Mycol Soc 81, 121-127.[CrossRef] [Google Scholar]
  6. Bonde, M. R., Micales, J. A. & Peterson, G. L. (1993). The use of isozyme analysis for identification of plant-pathogenic fungi. New Phytol 128, 135-143. [Google Scholar]
  7. Bresinsky, A., Fischer, M., Meixner, B. & Paulus, W. (1987). Speciation in Pleurotus.Mycologia 79, 234-245.[CrossRef] [Google Scholar]
  8. Bryan, G. T., Labourdette, E., Melton, R. E., Nicholson, P., Daniels, M. J. & Osbourn, A. E. (1999). DNA polymorphism and host range in the take-all fungus, Gaeumannomyces graminis.Mycol Res 103, 319-327.[CrossRef] [Google Scholar]
  9. Burdon, J. J. & Roelfs, A. P. (1983). The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis.Phytopathology 75, 1068-1073. [Google Scholar]
  10. Cailleux, R., Diop, A. & Joly, P. (1981). Relations d’interfertilité entre quelques représentents des Pleurotes des Ombellifères. Bull Soc Mycol Fr 97, 97-124. [Google Scholar]
  11. Chamuris, G. P. (1991). Speciation in the Peniophora cinerea complex. Mycologia 83, 736-742.[CrossRef] [Google Scholar]
  12. Crow, J. F. & Kimura, M. (1970).An Introduction to Population Genetics Theory. New York: Harper & Row.
  13. Crowhurst, R. N., Hawthorne, B. T., Rilkkerink, E. H. A. & Templeton, M. D. (1991). Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplified polymorphic DNA.Curr Genet 20, 391-396.[CrossRef] [Google Scholar]
  14. Duncan, E. G. (1972). Microevolution in Auricularia polytricha.Mycologia 64, 394-404.[CrossRef] [Google Scholar]
  15. Ennos, R. A. & Swales, K. W. (1991). Genetic variability and population structure in the canker pathogen Crumenulopsis sororia.Mycol Res 95, 521-525.[CrossRef] [Google Scholar]
  16. Fries, N. (1985). Intersterility groups in Paxillus involutus.Mycotaxon 24, 403-409. [Google Scholar]
  17. Futuyma, D. J. (1986a).Evolutionary Biology. Sunderland, MA: Sinauer Associates.
  18. Futuyma, D. J. (1986b).Patterns and Processes in the Evolution of Life. Edited by D. Raup & D. Jablonski. Berlin & New York: Springer.
  19. Gonzalez, P. & Labarère, J. (2000). Phylogenetic relationships of Pleurotus species according to the sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains. Microbiology 146, 209-221. [Google Scholar]
  20. Gottlieb, A. M., Saidman, B. O. & Wright, J. E. (1998). Isoenzymes of Ganoderma species from southern South America. Mycol Res 102, 415-426.[CrossRef] [Google Scholar]
  21. Hamelin, R. C., Ouellette, G. B. & Bernier, L. (1993). Identification of Gremmeniella abietina races with random amplified polymorphic DNA markers. Mol Plant–Microbe Interact 5, 479-483. [Google Scholar]
  22. Harrington, T. C., Steimel, J. P., Wingfield, M. J. & Kile, G. A. (1996). Isozyme variation and species delimitation in the Ceratocystis coerulescens complex. Mycologia 88, 104-113.[CrossRef] [Google Scholar]
  23. Heim, R. (1960). Le Pleurote des Ombellifères en Iran. Rev Mycol 25, 242-247. [Google Scholar]
  24. Heinfling, A., Martinez, M. J., Martinez, A. T., Bergbauer, M. & Szewzyk, U. (1998). Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64, 2788-2793. [Google Scholar]
  25. Hilber, O. (1982). Die Gattung Pleurotus (Fr.) Kummer unter besonderer Berücksichtigung des Pleurotus eryngii-Formenkomplexes. Bibliotheca Mycologica 87. Vaduz: J. Cramer.
  26. Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R. & Molineux, I. J. (1992). Experimental phylogenetics: generation of a known phylogeny. Science 255, 589-592.[CrossRef] [Google Scholar]
  27. Holmes, G. J., Eckert, J. W. & Pitt, J. I. (1994). Revised description of Penicillium ulaiense and its role as a pathogen of citrus fruits. Phytopathology 85, 522-527. [Google Scholar]
  28. Inzenga, G. (1863). Nuova specie di agarico del Prof. Giuseppe Inzenga. Giorn Reale Ist Incoragg Agric Sicil Palermo 1, 161-164. [Google Scholar]
  29. Iraçabal, B., Zervakis, G. & Labarère, J. (1995). Molecular systematics of the genus Pleurotus: analysis of restriction polymorphisms in ribosomal DNA. Microbiology 141, 1479-1490.[CrossRef] [Google Scholar]
  30. Joly, P., Cailleux, R. & Cerceau, M.-T. (1990). La stérilité male pathologique, élément de la co-adaptation entre populations de champignons et de plantes-hotes: modèle des Pleurotes des Ombellifères. Bull Soc Bot Fr 137, 71-85. [Google Scholar]
  31. Jungehülsing, U. & Tudzynski, P. (1997). Analysis of genetic diversity in Claviceps purpurea by RAPD markers. Mycol Res 101, 1-6.[CrossRef] [Google Scholar]
  32. Kemp, R. F. O. (1975). Breeding biology of Coprinus species of the section Lanatuli. Trans Br Mycol Soc 65, 375-388.[CrossRef] [Google Scholar]
  33. Kerrigan, R. W & Ross, I. K. (1989). Allozymes of a wild Agaricus bisporus population: new alleles, new genotypes. Mycologia 81, 433-440.[CrossRef] [Google Scholar]
  34. Lande, R. (1984). The expected fixation rate of chromosomal inversions. Evolution 38, 743-752.[CrossRef] [Google Scholar]
  35. Lappalainen, J. H. & Yli-Mattila, T. (1999). Genetic diversity in Finland of the birch endophyte Gnomonia setacea as determined by RAPD-PCR markers. Mycol Res 103, 328-332.[CrossRef] [Google Scholar]
  36. Lewinsohn, D., Nevo, E., Hadar, Y., Wasser, S. P. & Beharav, A. (2000). Ecogeographical variation in the Pleurotus eryngii complex (higher Basidiomycetes) in Israel. Mycol Res 104, 1184-1190.[CrossRef] [Google Scholar]
  37. Loukas, M. & Krimbas, C. (1980). Isozyme techniques in Drosophila subobscura.Drosophila Inf Serv 55, 157-158. [Google Scholar]
  38. Macrae, R. (1967). Pairing incompatibility and other distinctions among Hirschioporus (Polyporus) abietinus, H. fusco-violaceous and H. laricinus. Can J Bot 45, 1371-1398.[CrossRef] [Google Scholar]
  39. McCutcheon, T. L., Caroll, G. C. & Schwab, S. (1993). Genotypic diversity in populations of a fungal endophyte from Douglas fir. Mycologia 85, 180-186.[CrossRef] [Google Scholar]
  40. McDonald, B. A, Miles, J., Nelson, L. R. & Pettway, R. E. (1994). Genetic variability in nuclear DNA in field populations of Stagonospora nodorum.Phytopathology 84, 250-255.[CrossRef] [Google Scholar]
  41. May, B., Wright, J. E. & Stoneking, M. (1979). Joint segregation of biochemical loci in Salmonidae: results from experiments with Salvelinus and review of the literature on other species. J Fish Res Board Can 36, 1114-1128.[CrossRef] [Google Scholar]
  42. Micales, J. A., Bonde, M. R. & Peterson, G. L. (1986). The use of isozyme analysis in fungal taxonomy and genetics. Mycotaxon 27, 405-449. [Google Scholar]
  43. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small sample of individuals. Genetics 89, 583-590. [Google Scholar]
  44. Nei, M. & Graur, D. (1984). Extent of protein polymorphism and the neutral mutation theory. Evol Biol 17, 73-118. [Google Scholar]
  45. Nevo, E. (1988). Genetic diversity in nature. Patterns and theory. Evol Biol 23, 216-246. [Google Scholar]
  46. Paavanen-Huhtala, S., Hyvönen, J., Bulat, S. M. & Yli-Mattila, T. (1999). RAPD-PCR, isozyme, rDNA RFLP and rDNA sequence analyses in identification of Finnish Fusarium oxysporum isolates. Mycol Res 102, 625-634. [Google Scholar]
  47. Pegler, D. N. (1977).Pleurotus (Agaricales) in India, Nepal and Pakistan. Kew Bull 31, 501-510.[CrossRef] [Google Scholar]
  48. Petersen, R. H. & Hughes, K. W. (1999). Species and speciation in mushrooms. BioScience 49, 440-452.[CrossRef] [Google Scholar]
  49. Philippoussis, A., Zervakis, G. & Diamantopoulou, P. (2001). Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microbiol Biotechnol 17, 191-200.[CrossRef] [Google Scholar]
  50. Raina, K., Jackson, N. & Chandlee, J. M. (1997). Detection of genetic variation in Sclerotinia homoeocarpa isolates using RAPD analysis. Mycol Res 101, 585-590.[CrossRef] [Google Scholar]
  51. Raper, C. A., Raper, J. R. & Miller, R. E. (1972). Genetic analysis of the life cycle of Agaricus bisporus.Mycologia 64, 1088-1117.[CrossRef] [Google Scholar]
  52. Rogers, S. O. & Bendich, A. J. (1988). Extraction of DNA from plant tissues. In Plant Molecular Biology Manual , pp. 1-11. Edited by S. B. Gevin, R. A. Schilperoort & D. P. S. Verma. Dordrecht:Kluwer Academic Publishers.
  53. Roux, P. & Labarère, J. (1990). Isozyme characterization of dikaryotic strains of the edible basidiomycete Agaricus bitorquis (Quél.) Sacc. (syn. Agaricus edulis). Exp Mycol 14, 101-112.[CrossRef] [Google Scholar]
  54. Ruiz-Duenas, F. J. & Martinez, M. J. (1996). Enzymatic activities of Trametes versicolor and Pleurotus eryngii implicated in biocontrol of Fusarium oxysporum f. sp. lycopersici.Curr Microbiol 32, 151-155.[CrossRef] [Google Scholar]
  55. Saber, M. (1990). Contribution to the knowledge of Agaricales, pleurotoid in habit in Iran. Iran J Plant Pathol 26, 29-40. [Google Scholar]
  56. Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N. & Whittman, T. S. (1986). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51, 873-884. [Google Scholar]
  57. Slézec, A.-M. (1984). Variabilité du nombre chromosomique chez les pleurotes des ombellifères. Can J Bot 62, 2610-2617.[CrossRef] [Google Scholar]
  58. Stanosz, G. R., Swart, W. J. & Smith, D. R. (1999). RAPD marker and isozyme characterization of Sphaeropsis sapinea from diverse coniferous hosts and locations. Mycol Res 103, 1193-1202.[CrossRef] [Google Scholar]
  59. Surve-Iyer, R. S., Adams, G. C., Iezzoni, A. F. & Jones, A. L. (1995). Isozyme detection and variation in Leucostoma species from Prunus and Malus.Mycologia 87, 471-482.[CrossRef] [Google Scholar]
  60. Swofford, D. L. (2000).paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b4a. Sunderland, MA: Sinauer Associates.
  61. Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. (1996). Phylogenetic inference. In Molecular Systematics , pp. 406-514. Edited by D. M. Hillis, C. Moritz & B. K. Mable. Sunderland, MA:Sinauer Associates.
  62. Urbanelli, S., Sallicandro, P., De Vito, E., Bullini, L. & Biocca, E. (1998). Biochemical systematics of some species in the genus Tuber.Mycologia 90, 537-546.[CrossRef] [Google Scholar]
  63. Venturella, G. (2000). Typification of Pleurotus nebrodensis.Mycotaxon 75, 229-231. [Google Scholar]
  64. Venturella, G., Zervakis, G. & La Rocca, S. (2000).Pleurotus eryngii var. elaeoselini var. nov. from Sicily. Mycotaxon 76, 419-427. [Google Scholar]
  65. Vilgalys, R. & Sun, B. L. (1994). Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc Natl Acad Sci USA 91, 4599-4603.[CrossRef] [Google Scholar]
  66. Vilgalys, R., Moncalvo, J.-M., Liou, S.-R. & Volovcek, M. (1996). Recent advances in molecular systematics of the genus Pleurotus. In Mushroom Biology and Mushroom Products , pp. 91-102. Edited by D. J. Royse. Pennsylvania:PennState University Press.
  67. Wasser, S. P. & Weis, A. L. (1999). Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (review). Int J Med Mushr 1, 31-62.[CrossRef] [Google Scholar]
  68. Weir, T. L., Huff, D. R., Christ, B. J. & Romaine, C. P. (1998). RAPD-PCR analysis of genetic variation among isolates of Alternaria solani and Alternaria alternata from potato and tomato. Mycologia 90, 813-821.[CrossRef] [Google Scholar]
  69. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18, 6531-6535.[CrossRef] [Google Scholar]
  70. Worrall, J. J., Parmeter, J. R.Jr & Cobb, F. W.Jr (1983). Host specialization of Heterobasidion annosum.Phytopathology 73, 304-307.[CrossRef] [Google Scholar]
  71. Wu, O. X., Mueller, G. M., Lutzoni, F. M., Huang, Y. Q. & Guo, S. Y. (2000). Phylogenetic and biogeographic relationships of eastern Asian and eastern North American disjunct Suillus species (fungi) as inferred from nuclear ribosomal RNA ITS sequences. Mol Phylogenet Evol 17, 37-47.[CrossRef] [Google Scholar]
  72. Yoon, C., Gessner, R. & Romano, M. (1990). Population genetics and systematics of the Morchella esculenta complex. Mycologia 82, 227-235.[CrossRef] [Google Scholar]
  73. Zervakis, G. (1998). Mating competence and biological species within the subgenus Coremiopleurotus. Mycologia 90, 1063-1074.[CrossRef] [Google Scholar]
  74. Zervakis, G. & Balis, C. (1995). Incompatibility alleles and mating behaviour between and within Pleurotus species. In Science and Cultivation of Edible Fungi , pp. 53-62. Edited by T. Elliott. Rotterdam:A. Balkema.
  75. Zervakis, G. & Balis, C. (1996). A pluralistic approach on the study of Pleurotus species, with emphasis on compatibility and physiology of the European morphotaxa. Mycol Res 100, 717-731.[CrossRef] [Google Scholar]
  76. Zervakis, G. & Labarère, J. (1992). Taxonomic relationships within the fungal genus Pleurotus as determined by isoelectric focusing analysis of enzyme patterns. J Gen Microbiol 138, 635-645.[CrossRef] [Google Scholar]
  77. Zervakis, G. & Venturella, G. (1998). Towards the elucidation of the systematics of the Pleurotus taxa growing on Umbellifers. In Proceedings of the Sixth International Mycological Congress, p. 7 (abstract). Jerusalem: IMI.
  78. Zervakis, G., Sourdis, J. & Balis, C. (1994). Genetic variability and systematics of eleven Pleurotus species based on isozyme analysis. Mycol Res 98, 329-341.[CrossRef] [Google Scholar]
  79. Zervakis, G., Yiatras, P. & Balis, C. (1996). Edible mushrooms from olive mill wastes. Int Biodeterior Biodegrad 38, 237-243.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-11-3183
Loading
/content/journal/micro/10.1099/00221287-147-11-3183
Loading

Data & Media loading...

Most cited Most Cited RSS feed