., considered as emerging opportunistic pathogens, belong to the family . Among the criteria currently used for their classification is the presence of a single FeSOD (iron-containing superoxide dismutase), which distinguishes them from . In this paper the cloning of the and genes encoding two different SODs in ATCC 7966 is reported. The gene encoded an FeSOD (196 amino acids, 215 kDa), was constitutively expressed and showed 75% homology with the FeSOD. The gene encoded a protein of 206 amino acids (225 kDa) with MnSOD (manganese-containing SOD) activity and showed 55% homology with the MnSOD. The MnSOD of was detected only during the stationary phase of growth under high aeration or when induced by lack of iron. Nevertheless, paraquat had no detectable effect on its production. The amino-terminal part of the Mn-containing protein contained a putative signal sequence which could permit a periplasmic localization.


Article metrics loading...

Loading full text...

Full text loading...



  1. Barghouthi, R., Payne, S. M., Arceneaux, J. E. L. & Byers, B. R. (1991). Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila. J Bacteriol 173, 5121-5128. [Google Scholar]
  2. Barnes, A. C., Horne, M. T. & Ellis, A. E. (1996). Effect of iron on expression of superoxide dismutase by Aeromonas salmonicida and associated resistance to superoxide anion.FEMS Microbiol Lett 142, 19-26.[CrossRef] [Google Scholar]
  3. Baumann, P. & Schubert, R. H. W. (1984).Vibrionaceae In Bergey’s Manual of Systematic Bacteriology , pp. 516-550. Edited by N. R. Krieg & J. G. Holt. Baltimore:Williams & Wilkins.
  4. Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44, 276-287.[CrossRef] [Google Scholar]
  5. Benov, L. & Fridovich, I. (1996). Functional significance of the Cu,ZnSOD in Escherichia coli. Arch Biochem Biophys 327, 249-253.[CrossRef] [Google Scholar]
  6. Benov, L., Chang, L. Y., Day, B. & Fridovich, I. (1995). Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization. Arch Biochem Biophys 319, 508-511.[CrossRef] [Google Scholar]
  7. Bollinger, N., Hassett, D. J., Iglewski, B. H., Costerton, J. W. & McDermott, T. R. (2001). Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol 183, 1990-1996.[CrossRef] [Google Scholar]
  8. Carlioz, A., Ludwig, M. L., Stallings, W. C., Fee, J. A., Steinmann, H. M. & Touati, D. (1988). Iron superoxide dismutase: nucleotide sequence of the gene from Escherichia coli K12 and correlations with crystal structures. J Biol Chem 263, 1555-1562. [Google Scholar]
  9. Clements, M. O., Watson, S. P. & Foster, S. J. (1999). Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 181, 3898-3903. [Google Scholar]
  10. Colwell, R. R., MacDonell, M. T. & De Ley, J. (1986). Proposal to recognize the family Aeromonadaceae fam. nov. Int J Syst Bacteriol 36, 473-477.[CrossRef] [Google Scholar]
  11. Compan, I. & Touati, D. (1993). Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 175, 1687-1696. [Google Scholar]
  12. Demple, B. (1991). Regulation of bacterial oxidative stress genes. Annu Rev Genet 25, 315-337.[CrossRef] [Google Scholar]
  13. Droillard, M. J., Bureau, D., Paulin, A. & Daussart, J. (1989). Identification of different classes of superoxide dismutase in carnation petals. Electrophoresis 10, 44-68. [Google Scholar]
  14. Dubrac, S. & Touati, D. (2000). Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter.J Bacteriol 182, 3802-3808.[CrossRef] [Google Scholar]
  15. Escolar, L., Pérez-Martin, J. & de Lorenzo, V. (1998). Binding of the Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 283, 537-547.[CrossRef] [Google Scholar]
  16. Fridovich, I. (1986). Superoxide dismutases. Adv Enzymol 58, 61-97. [Google Scholar]
  17. Geißdörfer, W., Ratajczak, A. & Wolfgang, H. (1997). Nucleotide sequence of a putative periplasmic Mn superoxide dismutase from Acinetobacter calcoaceticus ADP1. Gene 186, 305-308.[CrossRef] [Google Scholar]
  18. Hassan, H. M. (1984). Determination of microbial damage caused by oxygen free radicals, and the protective role of superoxide dismutase. Methods Enzymol 105, 404-412. [Google Scholar]
  19. Hunter, T., Ikebukuro, K., Bannister, W. H., Bannister, J. V. & Hunter, G. J. (1997). The conserved residue tyrosine 34 is essential for maximal activity of iron-superoxide dismutase from Escherichia coli. Biochemistry 36, 4925-4933.[CrossRef] [Google Scholar]
  20. Inaoka, T., Matsumura, Y. & Tsuchido, T. (1998). Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis. J Bacteriol 180, 3697-3703. [Google Scholar]
  21. Kirov, S. M. (1997).Aeromonas and Plesiomonas species In Food Microbiology: Fundamentals and Frontiers , pp. 265-287. Edited by M. P. Doyle, L. R. Beuchat & T. J. Montville. Washington, DC:American Society for Microbiology.
  22. Kroll, J. S., Langford, P. R. & Loynds, B. (1991). Copper-zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. J Bacteriol 173, 7449-7457. [Google Scholar]
  23. Kroll, J. S., Langford, P. R., Wilks, K. E. & Keil, A. D. (1995). Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology 141, 2271-2279.[CrossRef] [Google Scholar]
  24. Leclère, V., Boiron, P. & Blondeau, R. (1999). Diversity of superoxide-dismutases among clinical and soil isolates of Streptomyces species. Curr Microbiol 39, 365-368.[CrossRef] [Google Scholar]
  25. Merino, S., Rubires, X., Knochel, S. & Tomas, J. M. (1995). Emerging pathogens: Aeromonas spp. Int J Food Microbiol 28, 157-168.[CrossRef] [Google Scholar]
  26. Niederhoffer, E. C., Najanro, C. M., Bradley, K. L. & Fee, J. A. (1990). Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol 172, 1930-1938. [Google Scholar]
  27. Nielsen, H., Engelbrecht, J., Brunak, S. & Von Heijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1-6.[CrossRef] [Google Scholar]
  28. Parker, M. W. & Blake, C. C. F. (1988). Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett 229, 377-382.[CrossRef] [Google Scholar]
  29. Saint-John, G. & Steinmann, H. M. (1996). Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J Bacteriol 178, 1578-1584. [Google Scholar]
  30. Takeda, Y. & Avila, H. (1986). Structure and gene expression of the E. coli Mn-superoxide dismutase gene. Nucleic Acids Res 14, 4577-4589.[CrossRef] [Google Scholar]
  31. Youn, H.-D., Kim, E.-J., Roe, J.-H., Hah, Y. C. & Kang, S.-O. (1996). A novel nickel containing superoxide dismutase from Streptomyces spp. Biochem J 318, 889-896. [Google Scholar]
  32. Zhang, Y. L., Ong, C. T. & Leung, K. Y. (2000). Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiology 146, 999-1009. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error