Eleven different cyanobacteria were investigated with respect to their capabilities to synthesize poly-3-hydroxybutyrate [poly(3HB)] and the type of poly-β-hydroxyalkanoic acid (PHA) synthase accounting for the synthesis of this polyester. Several methods, including (i) Southern blot analysis using a -specific DNA probe, (ii) Western blot analysis using specific polyclonal anti-PhaE antibodies raised in this study against PhaE of sp. strain PCC 6803, (iii) generation and sequence analysis of PCR products using -specific oligonucleotides as primers, and/or (iv) cloning and sequence analysis of PHA synthase structural genes, were used to provide evidence for the presence of a type-III PHA synthase in the following cyanobacteria: sp. strains MA19 and PCC 6715, PCC 6912, SAG 1403-2, sp. strains PCC 7424, PCC 8303 and PCC 8801, and sp. strain PCC 7428. The screening was compared with corresponding studies using crude protein extracts and genomic DNA of sp. strain PCC 6803, as a positive control, which is so far the only cyanobacterium for which molecular data of the PHA synthase genes are available. No evidence for the presence of a type-III PHA synthase could be obtained for only three of the eleven investigated cyanobacteria ( sp. strain PCC 7437, sp. strain PCC 8955 and sp. strain PCC 6501). The entire PHA synthase structural genes of the two thermophilic cyanobacteria sp. strain MA19 and PCC 6912, and in addition a central region of the gene of sp. strain PCC 8303, were cloned, sequenced and also heterologously expressed in .


Article metrics loading...

Loading full text...

Full text loading...



  1. Arino, X., Ortega-Calvo, J. J., Hernandez-Marine, M. & Sainz-Jimenez, C. (1995). Effect of sulfur starvation on the morphology and ultrastructure of the cyanobacterium Gloeothece sp. PCC 6909. Arch Microbiol 163, 447-453.[CrossRef] [Google Scholar]
  2. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef] [Google Scholar]
  3. Carr, N. G. (1966). The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chlorogloea fritschii. Biochim Biophys Acta 120, 22308-22310. [Google Scholar]
  4. De Philippis, R., Sili, C. & Vincenzini, M. (1992). Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima. J Gen Microbiol 138, 1623-1628.[CrossRef] [Google Scholar]
  5. Felsenstein, J. (1989).phylip – phylogeny inference package (version 3.2). Cladistics 5, 164-166. [Google Scholar]
  6. Hai, T., Oppermann-Sanio, F. B. & Steinbüchel, A. (1999). Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19. FEMS Microbiol Lett 181, 229-236.[CrossRef] [Google Scholar]
  7. Hein, S., Hai, T. & Steinbüchel, A. (1998).Synechocystis sp. PCC 6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170, 162-170.[CrossRef] [Google Scholar]
  8. Hjelm, H., Hjelm, K. & Sjöquist, J. (1972). Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbant for isolation of immunoglobulins. FEBS Lett 28, 73-76.[CrossRef] [Google Scholar]
  9. Hoang, T. T. & Schweizer, H. P. (1999). Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and role in acylated homoserine lactone synthesis. J Bacteriol 181, 5489-5497. [Google Scholar]
  10. Jensen, T. E. & Sicko, L. M. (1971). Fine structure of poly-β-hydroxybutyric acid granules in a blue-green alga, Chlorogloea fritschii. J Bacteriol 111, 683-686. [Google Scholar]
  11. Jia, J., Kappock, J., Frick, T., Sinskey, A. J. & Stubbe, J. (2000). Lipase provides a new mechanistic model for polyhydroxybutyrate synthases: Characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39, 3927-3936.[CrossRef] [Google Scholar]
  12. Kaneko, T., Sato, S., Kotani, H. & 21 other authors (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 30, 185–209. [Google Scholar]
  13. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef] [Google Scholar]
  14. Lama, L., Nicolaus, B., Calandrelli, M., Manca, M. C., Romano, I. & Gambacorta, A. (1996). Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10C. Phytochemistry 42, 655-659.[CrossRef] [Google Scholar]
  15. Liebergesell, M. & Steinbüchel, A. (1992). Cloning and nucleotide sequence of genes relevant for biosynthesis of polyhydroxyalkanoic acid in Chromatium vinosum strain D. Eur J Biochem 209, 135-150.[CrossRef] [Google Scholar]
  16. Liebergesell, M. & Steinbüchel, A. (1993). Cloning and molecular analysis of the poly(3-hydroxybutyric acid) biosynthesis genes of Thiocystis violacea. Appl Microbiol Biotechnol 38, 493-501. [Google Scholar]
  17. Liebergesell, M., Sonomoto, K., Madkour, M., Mayer, F. & Steinbüchel, A. (1994). Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur J Biochem 226, 71-80.[CrossRef] [Google Scholar]
  18. Liebergesell, M., Rahalkar, S. & Steinbüchel, A. (2000). Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl Microbiol Biotechnol 54, 186-194.[CrossRef] [Google Scholar]
  19. McCool, G. J. & Cannon, M. C. (1999). Polyhydroxyalkanoate inclusion body-associated proteins region in Bacillus megaterium. J Bacteriol 181, 585-592. [Google Scholar]
  20. Miyake, M., Erata, M. & Asada, Y. (1996). A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. J Ferment Bioeng 82, 512-514.[CrossRef] [Google Scholar]
  21. Müh, U., Sinskey, A. J., Kirby, D. P., Lane, W. S. & Stubbe, J. A. (1999). PHA synthase from Chromatium vinosum: Cysteine 149 is involved in covalent catalysis. Biochemistry 38, 826-837.[CrossRef] [Google Scholar]
  22. Rehm, B. H. A. & Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Biol Macromol 25, 3-19.[CrossRef] [Google Scholar]
  23. Rippka, R., Nelson, A., Kunisawa, R. & Cohen-Bazire, G. (1971). Nitrogen fixation by unicellular blue-green algae. Arch Mikrobiol 76, 341-348.[CrossRef] [Google Scholar]
  24. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1-61.[CrossRef] [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Simon, R., Priefer, U. & Pühler, U. (1983). A broad host range mobilization system for in vivo engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1, 784-791.[CrossRef] [Google Scholar]
  27. Stal, L. J., Heyer, H. & Jacob, G. (1990). Occurrence and role of polyhydroxyalkanoate in the cyanobacterium Oscillatoria limosa In Novel Biodegradable Microbial Polymers , pp. 435-438. Edited by E. A. Dawes. Dordrecht:Kluwer.
  28. Steinbüchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1, 1-24.[CrossRef] [Google Scholar]
  29. Steinbüchel, A. & Hein, S. (2001). Biochemical and molecular basis of polyhydroxyalkanoic acids in microorganisms. Adv Biochem Eng Biotechnol 71, 81-123. [Google Scholar]
  30. Steinbüchel, A. & Valentin, H. E. (1995). Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128, 219-228.[CrossRef] [Google Scholar]
  31. Taroncher-Oldenburg, G., Nishina, K. & Stephanopoulos, G. (2000). Identification and analysis of the polyhydroxyalkanoate-specific β-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66, 4440-4448.[CrossRef] [Google Scholar]
  32. Timm, A., Byrom, D. & Steinbüchel, A. (1990). Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl Microbiol Biotechnol 33, 296-301.[CrossRef] [Google Scholar]
  33. Triglia, T., Peterson, M. G. & Kemp, D. J. (1988). A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16, 8186.[CrossRef] [Google Scholar]
  34. Valentin, H. E. & Steinbüchel, A. (1994). Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl Microbiol Biotechnol 40, 699-709.[CrossRef] [Google Scholar]
  35. Vincenzini, M. & De Philippis, R. (1999). Polyhydroxyalkanoates In Chemicals from Microalgae , pp. 292-312. Edited by Z. Cohen. London:Taylor & Francis.
  36. Vincenzini, M., Sili, C., De Philippis, R., Ena, A. & Materasi, R. (1990). Occurrence of poly-β-hydroxybutyrate in Spirulina species. J Bacteriol 172, 2791-2792. [Google Scholar]
  37. Weber, K. & Osborn, M. (1969). The reliability of molecular weight determination by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244, 4406-4412. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error