The activity of the two almost identical K-uptake systems, Trk and Trk, from K-12 depends completely and partially on the presence of the gene, respectively. maps inside the operon, which encodes an ATP-binding cassette (ABC) transporter of unknown function from the subgroup of peptide-uptake systems. This study was carried out to clarify the role of gene products in the ATP dependence of the Trk systems. For this purpose Δ Δ and Δ Δ strains of containing plasmids with genes from either or were used. All five plasmid-encoded Sap proteins were made in mini-cells. The presence of the ATP-binding SapD protein from either or alone was sufficient for stimulating the K transport activity of the Trk and Trk systems. K-uptake experiments with cells containing SapD variants with changes in the Walker A box Lys-46 residue, the Walker B box Asp-183 residue and the signature motif residues Gly-162 or Gln-165 suggested that adenine nucleotide binding to SapD rather than ATP hydrolysis by this subunit is required for the activity of the Trk system. K transport via two plasmid-encoded Trk systems in a Δ strain remained dependent on both a high membrane potential and a high cytoplasmic ATP concentration, indicating that in ATP dependence of Trk activity can be independent of Sap proteins. These data are interpreted to mean that Trk systems can interact with an ABC protein other than SapD.


Article metrics loading...

Loading full text...

Full text loading...



  1. Babenko, A. P., Aguilar-Bryan, L. & Bryan, J. (1998). A view of SUR/KIR6.X, KATP channels. Annu Rev Physiol 60, 667-687.[CrossRef] [Google Scholar]
  2. Bakker, E. P. & Harold, F. M. (1980). Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force. J Biol Chem 255, 433-440. [Google Scholar]
  3. Bakker, E. P. & Mangerich, W. E. (1981). Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J Bacteriol 147, 820-826. [Google Scholar]
  4. Berger, E. A. (1973). Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Natl Acad Sci USA 70, 1514-1518.[CrossRef] [Google Scholar]
  5. Blattner, F. R., Plunkett, G. I., Bloch, C. A. & 14 other authors (1997). The complete genome sequence of Escherichia coli K12. Science 277, 1453–1474.[CrossRef] [Google Scholar]
  6. Boos, W. & Lucht, J. M. (1996). Periplasmic binding protein-dependent ABC transporters. In Escherichia coli and Salmonella. Cellular and Molecular Biology, pp. 1175–1209. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  7. Bossemeyer, D., Borchard, A., Dosch, D. C., Helmer, G. C., Epstein, W., Booth, I. R. & Bakker, E. P. (1989). K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for its attachment to the cytoplasmic membrane. J Biol Chem 264, 16403-16410. [Google Scholar]
  8. Bryan, J. & Aguilar-Bryan, L. (1999). Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K+ channels. Biochim Biophys Acta 1461, 285-305.[CrossRef] [Google Scholar]
  9. Clement, J. P.IV, Kunjilwar, K., Gonzalez, G., Schwanstecher, M., Panten, U., Aguilar-Bryan, L. & Bryan, J. (1997). Association and stoichiometry of KATP channels. Neuron 18, 827-838.[CrossRef] [Google Scholar]
  10. Diederichs, K., Diez, J., Greller, G., Müller, C., Breed, J., Schnell., C., Vonrhein, C., Boos, W. & Welte, W. (2000). Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J 19, 5951-5961.[CrossRef] [Google Scholar]
  11. Dosch, D. C., Helmer, G. L., Sutton, S. H., Salvacion, F. F. & Epstein, W. (1991). Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake of potassium. J Bacteriol 173, 687-696. [Google Scholar]
  12. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. & MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69-77.[CrossRef] [Google Scholar]
  13. Durell, S. R. & Guy, H. R. (1999). Structural models of the KtrB, TrkH and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys J 77, 789-807.[CrossRef] [Google Scholar]
  14. Durell, S. R., Hao, Y., Nakamura, T., Bakker, E. P. & Guy, H. R. (1999). Evolutionary relationship between K+ channels and symporters. Biophys J 77, 775-788.[CrossRef] [Google Scholar]
  15. Durell, S. R., Bakker, E. P. & Guy, H. R. (2000). Does the KdpA subunit of the high affinity K+-translocating P-type Kdp-ATPase have a structure similar to that of K+ channels? Biophys J 78, 188-199.[CrossRef] [Google Scholar]
  16. Epstein, W. & Kim, B. S. (1971). Potassium transport loci in Escherichia coli K-12. J Bacteriol 108, 639-644. [Google Scholar]
  17. Groisman, E. A. (1994). How bacteria resist killing by host-defense peptides.Trends Microbiol 2, 444-449.[CrossRef] [Google Scholar]
  18. Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. & Heffron, F. (1992). Resistance to host antimicrobial peptides is necessary for Salmonella virulence.Proc Natl Acad Sci USA 89, 11939-11943.[CrossRef] [Google Scholar]
  19. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.[CrossRef] [Google Scholar]
  20. Hanson, M. S., Slaughter, C. & Hansen, E. J. (1992). The hbpA gene of Haemophilus influenzae type b encodes a heme-binding lipoprotein conserved among heme-dependent Haemophilus species. Infect Immun 60, 2257-2266. [Google Scholar]
  21. Hung, L. W., Wang, I. Y., Nikaido, K., Liu, P. Q., Ames, G. F. L. & Kim, S. H. (1998). Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703-707.[CrossRef] [Google Scholar]
  22. Inagaki, N., Gonoi, T. & Seino, S. (1997). Subunit stoichiometry of the pancreatic β-cell ATP-sensitive K+ channel. FEBS Lett 409, 232-236.[CrossRef] [Google Scholar]
  23. Kimmich, G. A., Randles, J. & Brand, J. S. (1975). Assays of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system. Anal Biochem 69, 187-206.[CrossRef] [Google Scholar]
  24. Klionsky, D. J., Brusilow, W. S. A. & Simoni, R. D. (1984).In vivo evidence for the role of the ϵ subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli.J Bacteriol 160, 1055-1060. [Google Scholar]
  25. Link, A. J., Phillips, D. & Church, G. M. (1997). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228-6237. [Google Scholar]
  26. Linton, K. J. & Higgins, C. F. (1998). The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28, 5-13. [Google Scholar]
  27. Miller, J. H. (1972).Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Nakamura, T., Matsuba, Y., Yamamuro, N., Booth, I. R. & Unemoto, T. (1994). Cloning and sequencing of a K+ transport gene (trkA) from the marine bacterium Vibrio alginolyticus. Biochim Biophys Acta 1219, 701-705.[CrossRef] [Google Scholar]
  29. Nakamura, T., Yamamuro, N., Stumpe, S., Unemoto, T. & Bakker, E. P. (1998a). Cloning of the trkAH gene cluster and characterization of the Trk K+-uptake system of Vibrio alginolyticus. Microbiology 144, 2281-2289.[CrossRef] [Google Scholar]
  30. Nakamura, T., Yuda, R., Unemoto, T. & Bakker, E. P. (1998b). KtrAB, a new type of bacterial K+-uptake system from Vibrio alginolyticus. J Bacteriol 180, 3491-3494. [Google Scholar]
  31. Navarro, C., Wu, L.-F. & Mandrand-Berthelot, M.-A. (1993). The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol 9, 1181-1191.[CrossRef] [Google Scholar]
  32. Parra-Lopez, C., Baer, M. T. & Groisman, E. A. (1993). Molecular genetic analysis of a locus required for resistance to antimicrobial peptides. EMBO J 12, 4053-4062. [Google Scholar]
  33. Parra-Lopez, C., Lin, R., Aspedon, A. & Groisman, E. A. (1994). A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J 13, 4053-4062. [Google Scholar]
  34. Reeve, J. (1984). Synthesis of bacteriophage and plasmid-encoded polypeptides in minicells. In Advanced Molecular Genetics , pp. 212-223. Edited by A. Pühler & K. N. Timmis. Berlin:Springer.
  35. Rhoads, D. B. & Epstein, W. (1977). Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem 252, 1394-1401. [Google Scholar]
  36. Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef] [Google Scholar]
  37. Schleyer, M., Schmid, R. & Bakker, E. P. (1993). Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol 160, 424-431.[CrossRef] [Google Scholar]
  38. Schlösser, A., Hamann, A., Schleyer, M. & Bakker, E. P. (1992). The K+ uptake systems TrkG and TrkH from Escherichia coli: a pair of unusual transport systems involved in osmoregulation. In Molecular Mechanisms of Transport , pp. 51-58. Edited by E. Quagliariello & F. Palmieri. Amsterdam:Elsevier.
  39. Schlösser, A., Hamann, A., Bossemeyer, D., Schneider, E. & Bakker, E. P. (1993). NAD+ binding to the Escherichia coli K+-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD in bacterial transport. Mol Microbiol 9, 533-543.[CrossRef] [Google Scholar]
  40. Schlösser, A., Meldorf, M., Stumpe, S., Bakker, E. P. & Epstein, W. (1995). TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J Bacteriol 177, 1908-1910. [Google Scholar]
  41. Schmees, G., Stein, A., Hunke, S., Landmesser, H. & Schneider, E. (1999). Functional consequences of mutations in the conserved ‘signature sequence’ of the ATP-binding-cassette protein MalK. Eur J Biochem 266, 420-430.[CrossRef] [Google Scholar]
  42. Schneider, E. & Hunke, S. (1998). ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22, 1-20.[CrossRef] [Google Scholar]
  43. Schrempf, H., Schmidt, O., Kümmerlen, R., Hinnah, S., Müller, D., Betzler, M., Steinkamp, T. & Wagner, R. (1995). A prokaryotic ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J 14, 5170-5178. [Google Scholar]
  44. Shyng, S.-L. & Nichols, C. G. (1997). Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110, 655-664.[CrossRef] [Google Scholar]
  45. Stewart, G. S. A. B., Lubinsky-Mink, S., Jackson, C. G., Cassel, A. & Kuhn, J. (1986). pHG165: A pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid 15, 172-181.[CrossRef] [Google Scholar]
  46. Stewart, L. M. D., Bakker, E. P. & Booth, I. R. (1985). Energy coupling to K+ uptake via the Trk system in Escherichia coli: The role of ATP.J Gen Microbiol 131, 77-85. [Google Scholar]
  47. Stumpe, S. & Bakker, E. P. (1997). Requirement of a large K+-uptake capacity and of extracytoplasmic protease activity for protamine resistance in Escherichia coli. Arch Microbiol 167, 126-136.[CrossRef] [Google Scholar]
  48. Stumpe, S., Schlösser, A., Schleyer, M. & Bakker, E. P. (1996). K+ circulation across the prokaryotic cell membrane: K+-uptake systems. In Handbook of Biological Physics, Volume 2: Transport Processes in Eukaryotic and Prokaryotic Organelles , pp. 473-500. Edited by W. N. Konings, H. R. Kaback & J. S. Lolkema. Amsterdam:Elsevier.
  49. Stumpe, S., Schmid, R., Stephens, D. L., Georgiou, G. & Bakker, E. P. (1998). Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 180, 4002-4006. [Google Scholar]
  50. Tabor, S. & Richardson, C. C. (1985). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82, 1074-1078.[CrossRef] [Google Scholar]
  51. Tholema, N., Bakker, E. P., Suzuki, A. & Nakamura, T. (1999). Change to alanine of one out of four selectivity filter glycines in KtrB causes a two order of magnitude decrease in the affinities for both K+ and Na+ of the Na+ dependent K+ uptake system KtrAB from Vibrio alginolyticus. FEBS Lett 450, 217-220.[CrossRef] [Google Scholar]
  52. Ueda, K., Matsuo, M., Tanabe, K., Morita, K., Kioka, N. & Amachi, T. (1999). Comparative aspects of the function and mechanism of SUR1 and MDR1 proteins. Biochim Biophys Acta 1461, 305-313.[CrossRef] [Google Scholar]
  53. Walderhaug, M. O., Dosch, D. C. & Epstein, W. (1987). Potassium transport in bacteria. In Ion Transport in Prokaryotes , pp. 85-130. Edited by B. P. Rosen & S. Silver. New York:Academic Press.
  54. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. (1982). Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945-951. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error