1887

Abstract

is an aerobic Gram-negative rod widely distributed in natural environments. Unlike many bacteria, it produces a phosphate-irrepressible periplasmic alkaline phosphatase (AP). This work describes cloning of the gene encoding that enzyme from CCUG 4310 (NCTC 10585), and preliminary characterization of its product. The gene, named , encodes a protein (PafA) of 546 amino acids with a calculated molecular mass of the mature peptide of 58682 Da. PafA exhibits high sequence identity with the PhoV AP of PCC 7942 (499% identity) and with the Cda Ca-dependent ATPase of (519% identity), while being more distantly related to the PhoD AP of (221% identity) and to the PhoA AP of (140% identity). PafA was partially purified; it exhibits optimal activity at pH 85 and is active towards a broad spectrum of substrates including both phosphomonoesters and ATP, with preferential activity for the latter compound. The present findings allow definition of a new family of APs including 60 kDa, periplasmic enzymes whose expression is not influenced by freely available P in the medium. Moreover, PafA can be considered an evolutionary intermediate between Ca-ATPase of and the APs PhoV of PCC 7942 and PhoD of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2831
2001-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472831a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2831&mimeType=html&fmt=ahah

References

  1. Ansai T., Awano S., Chen X., Fuchi T., Arimoto T., Akifusa S., Takehara T. 1998; Purification and characterization of alkaline phosphatase containing phosphotyrosyl phosphatase activity from the bacterium Prevotella intermedia . FEBS Lett 428:157–160 [CrossRef]
    [Google Scholar]
  2. Bernardet J. F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae and proposal of Flavobacterium hydatis nom. nov. (basonym). Cytophaga aquatilis Strohl and Tait 1978. Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  3. Bradshaw R. A., Cancedda F., Ericsson L. H., Neumann P. A., Piccoli S. P., Schlesinger M. J., Shriefer K., Walsh K. A. 1981; Amino acid sequence of Escherichia coli alkaline phosphatase. Proc Natl Acad Sci USA 78:3473–3477 [CrossRef]
    [Google Scholar]
  4. Chifflet S., Torriglia A., Chiesa R., Tolosa S. 1988; A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal Biochem 168:1–4 [CrossRef]
    [Google Scholar]
  5. Cocks G. T., Wilson A. C. 1972; Enzyme evolution in the Enterobacteriaceae . J Bacteriol 110:793–802
    [Google Scholar]
  6. Desrosiers M. G., Gately L. J., Gambel A. M., Menick D. R. 1996; Purification and characterization of the Ca2+-ATPase of Flavobacterium odoratum . J Biol Chem 271:3945–3951 [CrossRef]
    [Google Scholar]
  7. DuBose R. F., Hartl D. L. 1990; The molecular evolution of bacterial alkaline phosphatase: correlating variation among enteric bacteria to experimental manipulations of the protein. Mol Biol Evol 7:547–577
    [Google Scholar]
  8. Ferro-Luzzi Ames G., Prody C., Kutsu S. 1984; Simple rapid and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160:1181–1183
    [Google Scholar]
  9. Gambel A. M., Desrosiers M. G., Menick D. R. 1992; Characterization of a P-type ATPase from Flavobacterium odoratum. J Biol Chem 267:15923–15931
    [Google Scholar]
  10. Garen A., Levinthal C. 1960; A fine-structure genetic and biochemical study of the enzyme alkaline phosphatase of E. coli . Biochim Biophys Acta 38:470–483 [CrossRef]
    [Google Scholar]
  11. Gomez P. F., Ingram L. O. 1995; Cloning, sequencing and characterization of the alkaline phosphatase gene ( phoD ) from Zymomonas mobilis . FEMS Microbiol Lett 125:237–246 [CrossRef]
    [Google Scholar]
  12. Heppel L. A., Harkness D. R., Himoe R. J. 1962; A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli . J Biol Chem 237:841–846
    [Google Scholar]
  13. Hulett F. M., Kim E. E., Bookstein C., Kapp N. V., Edwards C. W., Wyckoff H. W. 1991; Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J Biol Chem 266:1077–1084
    [Google Scholar]
  14. Kim E. E., Wyckoff H. W. 1989; Structure of alkaline phosphatase. Clin Chim Acta 186:175–188
    [Google Scholar]
  15. Kim E. E., Wyckoff H. W. 1991; Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol 218:449–464 [CrossRef]
    [Google Scholar]
  16. Kim J.-W., Peterson T., Bee G., Hulett F. M. 1998; Bacillus licheniformis MC14 alkaline phosphatase I gene with an extended COOH-terminus. FEMS Microbiol Lett 159:47–58 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  18. Lee M. H., Nittayajarn A., Ross R. P., Rothschild C. B., Parsonage D., Claiborne A., Rubens C. E. 1999; Characterization of Enterococcus faecalis alkaline phosphatase and use in identifying Streptococcus agalactiae secreted proteins. J Bacteriol 181:5790–5799
    [Google Scholar]
  19. Murphy J. E., Kantrowitz E. 1994; Why are mammalian alkaline phosphatases much more active then bacterial alkaline phosphatase?. Mol Microbiol 12:351–357 [CrossRef]
    [Google Scholar]
  20. Nelson K. E., Clayton R. A., Gill S. R. 25 other authors 1999; Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima . Nature 399:323–329 [CrossRef]
    [Google Scholar]
  21. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  22. Nierman W. C., Feldblyum T. V., Laub M. T. 34 other authors 2001; Complete genome sequence of Caulobacter crescentus . Proc Natl Acad Sci USA 98:4136–4141 [CrossRef]
    [Google Scholar]
  23. Peiffer W. E., Desrosiers M. G., Menick D. R. 1996; Cloning and expression of the unique Ca2+-ATPase from Flavobacterium odoratum . J Biol Chem 271:5095–5100 [CrossRef]
    [Google Scholar]
  24. Riccio M. L., Rossolini G. M., Lombardi G., Chiesurin A., Satta G. 1997; Expression cloning of different bacterial phosphatase-encoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and methyl green. J Appl Microbiol 82:177–185 [CrossRef]
    [Google Scholar]
  25. Rossolini G. M., Franceschini N., Riccio M. L., Mercuri P. S., Perilli M., Galleni M., Frere J. M., Amicosante G. 1998; Characterization and sequence of the Chryseobacterium ( Flavobacterium ) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 15:145–152
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  28. Segel I. H. 1976 Biochemical Calculations , 2nd edn. New York: Wiley;
    [Google Scholar]
  29. Siegman-Igra Y., Schwartz D., Soferman G., Konforti N. 1987; Flavobacterium group IIb bacteremia: report of a case and review of Flavobacterium infections. Med Microbiol Immunol 176:103–111
    [Google Scholar]
  30. Thaller M. C., Berlutti F., Schippa S., Lombardi G., Rossolini G. M. 1994; Characterization and sequence of PhoC, the principal phosphate irrepressible acid phosphatase of Morganella morganii . Microbiology 140:1341–1350 [CrossRef]
    [Google Scholar]
  31. Thaller M. C., Berlutti F., Schippa S., Iori P., Passariello C., Rossolini G. M. 1995; Heterogeneous patterns of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae . Int J Syst Bacteriol 45:255–261 [CrossRef]
    [Google Scholar]
  32. Wagner K. U., Masepohl B., Pistorius E. K. 1995; The cyanobacterium Synechococcus sp. strain PCC 7942 contains a second alkaline phosphatase encoded by phoV . Microbiology 141:3049–3058 [CrossRef]
    [Google Scholar]
  33. Wanner B. L. 1996; Phosphorus assimilation and control of the phosphate regulon. . In Escherichia coli and Salmonella, Cellular and Molecular Biology pp 1357–1381 Edited by Neidhardt F.and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2831
Loading
/content/journal/micro/10.1099/00221287-147-10-2831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error