1887

Abstract

is an aerobic Gram-negative rod widely distributed in natural environments. Unlike many bacteria, it produces a phosphate-irrepressible periplasmic alkaline phosphatase (AP). This work describes cloning of the gene encoding that enzyme from CCUG 4310 (NCTC 10585), and preliminary characterization of its product. The gene, named , encodes a protein (PafA) of 546 amino acids with a calculated molecular mass of the mature peptide of 58682 Da. PafA exhibits high sequence identity with the PhoV AP of PCC 7942 (499% identity) and with the Cda Ca-dependent ATPase of (519% identity), while being more distantly related to the PhoD AP of (221% identity) and to the PhoA AP of (140% identity). PafA was partially purified; it exhibits optimal activity at pH 85 and is active towards a broad spectrum of substrates including both phosphomonoesters and ATP, with preferential activity for the latter compound. The present findings allow definition of a new family of APs including 60 kDa, periplasmic enzymes whose expression is not influenced by freely available P in the medium. Moreover, PafA can be considered an evolutionary intermediate between Ca-ATPase of and the APs PhoV of PCC 7942 and PhoD of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2831
2001-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472831a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2831&mimeType=html&fmt=ahah

References

  1. Ansai, T., Awano, S., Chen, X., Fuchi, T., Arimoto, T., Akifusa, S. & Takehara, T. ( 1998; ). Purification and characterization of alkaline phosphatase containing phosphotyrosyl phosphatase activity from the bacterium Prevotella intermedia. FEBS Lett 428, 157-160.[CrossRef]
    [Google Scholar]
  2. Bernardet, J. F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P. ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128-148.[CrossRef]
    [Google Scholar]
  3. Bradshaw, R. A., Cancedda, F., Ericsson, L. H., Neumann, P. A., Piccoli, S. P., Schlesinger, M. J., Shriefer, K. & Walsh, K. A. ( 1981; ). Amino acid sequence of Escherichia coli alkaline phosphatase. Proc Natl Acad Sci USA 78, 3473-3477.[CrossRef]
    [Google Scholar]
  4. Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. ( 1988; ). A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal Biochem 168, 1-4.[CrossRef]
    [Google Scholar]
  5. Cocks, G. T. & Wilson, A. C. ( 1972; ). Enzyme evolution in the Enterobacteriaceae. J Bacteriol 110, 793-802.
    [Google Scholar]
  6. Desrosiers, M. G., Gately, L. J., Gambel, A. M. & Menick, D. R. ( 1996; ). Purification and characterization of the Ca2+-ATPase of Flavobacterium odoratum. J Biol Chem 271, 3945-3951.[CrossRef]
    [Google Scholar]
  7. DuBose, R. F. & Hartl, D. L. ( 1990; ). The molecular evolution of bacterial alkaline phosphatase: correlating variation among enteric bacteria to experimental manipulations of the protein. Mol Biol Evol 7, 547-577.
    [Google Scholar]
  8. Ferro-Luzzi Ames, G., Prody, C. & Kutsu, S. ( 1984; ). Simple rapid and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160, 1181-1183.
    [Google Scholar]
  9. Gambel, A. M., Desrosiers, M. G. & Menick, D. R. ( 1992; ). Characterization of a P-type ATPase from Flavobacterium odoratum. J Biol Chem 267, 15923-15931.
    [Google Scholar]
  10. Garen, A. & Levinthal, C. ( 1960; ). A fine-structure genetic and biochemical study of the enzyme alkaline phosphatase of E. coli. Biochim Biophys Acta 38, 470-483.[CrossRef]
    [Google Scholar]
  11. Gomez, P. F. & Ingram, L. O. ( 1995; ). Cloning, sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis. FEMS Microbiol Lett 125, 237-246.[CrossRef]
    [Google Scholar]
  12. Heppel, L. A., Harkness, D. R. & Himoe, R. J. ( 1962; ). A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem 237, 841-846.
    [Google Scholar]
  13. Hulett, F. M., Kim, E. E., Bookstein, C., Kapp, N. V., Edwards, C. W. & Wyckoff, H. W. ( 1991; ). Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J Biol Chem 266, 1077-1084.
    [Google Scholar]
  14. Kim, E. E. & Wyckoff, H. W. ( 1989; ). Structure of alkaline phosphatase. Clin Chim Acta 186, 175-188.
    [Google Scholar]
  15. Kim, E. E. & Wyckoff, H. W. ( 1991; ). Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol 218, 449-464.[CrossRef]
    [Google Scholar]
  16. Kim, J.-W., Peterson, T., Bee, G. & Hulett, F. M. ( 1998; ). Bacillus licheniformis MC14 alkaline phosphatase I gene with an extended COOH-terminus. FEMS Microbiol Lett 159, 47-58.[CrossRef]
    [Google Scholar]
  17. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  18. Lee, M. H., Nittayajarn, A., Ross, R. P., Rothschild, C. B., Parsonage, D., Claiborne, A. & Rubens, C. E. ( 1999; ). Characterization of Enterococcus faecalis alkaline phosphatase and use in identifying Streptococcus agalactiae secreted proteins. J Bacteriol 181, 5790-5799.
    [Google Scholar]
  19. Murphy, J. E. & Kantrowitz, E. ( 1994; ). Why are mammalian alkaline phosphatases much more active then bacterial alkaline phosphatase? Mol Microbiol 12, 351-357.[CrossRef]
    [Google Scholar]
  20. Nelson, K. E., Clayton, R. A., Gill, S. R. & 25 other authors ( 1999; ). Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329.[CrossRef]
    [Google Scholar]
  21. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1-6.[CrossRef]
    [Google Scholar]
  22. Nierman, W. C., Feldblyum, T. V., Laub, M. T. & 34 other authors ( 2001; ). Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98, 4136–4141.[CrossRef]
    [Google Scholar]
  23. Peiffer, W. E., Desrosiers, M. G. & Menick, D. R. ( 1996; ). Cloning and expression of the unique Ca2+-ATPase from Flavobacterium odoratum. J Biol Chem 271, 5095-5100.[CrossRef]
    [Google Scholar]
  24. Riccio, M. L., Rossolini, G. M., Lombardi, G., Chiesurin, A. & Satta, G. ( 1997; ). Expression cloning of different bacterial phosphatase-encoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and methyl green. J Appl Microbiol 82, 177-185.[CrossRef]
    [Google Scholar]
  25. Rossolini, G. M., Franceschini, N., Riccio, M. L., Mercuri, P. S., Perilli, M., Galleni, M., Frere, J. M. & Amicosante, G. ( 1998; ). Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 15, 145-152.
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef]
    [Google Scholar]
  28. Segel, I. H. ( 1976; ). Biochemical Calculations 2nd edn. New York:Wiley.
  29. Siegman-Igra, Y., Schwartz, D., Soferman, G. & Konforti, N. ( 1987; ). Flavobacterium group IIb bacteremia: report of a case and review of Flavobacterium infections. Med Microbiol Immunol 176, 103-111.
    [Google Scholar]
  30. Thaller, M. C., Berlutti, F., Schippa, S., Lombardi, G. & Rossolini, G. M. ( 1994; ). Characterization and sequence of PhoC, the principal phosphate irrepressible acid phosphatase of Morganella morganii. Microbiology 140, 1341-1350.[CrossRef]
    [Google Scholar]
  31. Thaller, M. C., Berlutti, F., Schippa, S., Iori, P., Passariello, C. & Rossolini, G. M. ( 1995; ). Heterogeneous patterns of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae. Int J Syst Bacteriol 45, 255-261.[CrossRef]
    [Google Scholar]
  32. Wagner, K. U., Masepohl, B. & Pistorius, E. K. ( 1995; ). The cyanobacterium Synechococcus sp. strain PCC 7942 contains a second alkaline phosphatase encoded by phoV. Microbiology 141, 3049-3058.[CrossRef]
    [Google Scholar]
  33. Wanner, B. L. (1996). Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella, Cellular and Molecular Biology, pp. 1357–1381. Edited by F. Neidhardt and others. Washington, DC: American Society for Microbiology.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2831
Loading
/content/journal/micro/10.1099/00221287-147-10-2831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error