1887

Abstract

is a nosocomial pathogen that causes a range of chronic intestinal diseases, usually as a result of antimicrobial therapy. Macrolide-lincosamide-streptogramin B (MLS) resistance in is encoded by the Erm B resistance determinant, which is thought to be located on a conjugative transposon, Tn. The 9630 bp Tn element has been cloned and completely sequenced and its insertion site determined. Analysis of the resultant data reveals that Tn is not a classical conjugative transposon but appears to be a mobilizable non-conjugative element. It does not carry any transposase or site-specific recombinase genes, nor any genes likely to be involved in conjugation. Furthermore, using PCR analysis it has been shown that isolates of obtained from different geographical locations exhibit heterogeneity in the genetic arrangement of both Tn and their Erm B determinants. These results indicate that genetic exchange and recombination between these determinants occurs in the clinical and natural environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2717
2001-10-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472717a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2717&mimeType=html&fmt=ahah

References

  1. Abraham L. J., Rood J. I. 1985; Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens . J Bacteriol 161:636–640
    [Google Scholar]
  2. Banerjee S., LaMont J. T. 2000; Non-antibiotic therapy for Clostridium difficile infection. Curr Opin Infect Dis 13:215–219 [CrossRef]
    [Google Scholar]
  3. Berryman D. I., Rood J. I. 1995; The closely related ermB - ermAM genes from Clostridium perfringens , Enterococcus faecalis (pAMβ1), and Streptococcus agalactiae (pIP501) are flanked by variants of a directly repeated sequence. Antimicrob Agents Chemother 39:1830–1834 [CrossRef]
    [Google Scholar]
  4. Borriello S. P., Davies H. A., Barclay F. E. 1988; Detection of fimbriae amongst strains of Clostridium difficile . FEMS Microbiol Lett 49:65–67 [CrossRef]
    [Google Scholar]
  5. Celli J., Trieu-Cuot P. 1998; Circularization of Tn 916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol Microbiol 28:103–117
    [Google Scholar]
  6. Chow A. W., Cheng N., Bartlett K. H. 1985; In vitro susceptibility of Clostridium difficile to new β-lactam and quinolone antibiotics. Antimicrob Agents Chemother 28:842–844 [CrossRef]
    [Google Scholar]
  7. Deckert G., Warren P. V., Gaasterland T. 12 other authors 1998; The complete genome of the hyperthermophilic bacterium Aquifex aeolicus . Nature 392:353–358 [CrossRef]
    [Google Scholar]
  8. Easter C. L., Schwab H., Helinski D. R. 1998; Role of the parCBA operon of the broad-host range plasmid RK2 in stable plasmid maintenance. J Bacteriol 180:6023–6030
    [Google Scholar]
  9. Eaton R. W., Timmis K. N. 1986; Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J Bacteriol 168:123–131
    [Google Scholar]
  10. Farrow K. A., Lyras D., Rood J. I. 2000; The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm (B) genes. Antimicrob Agents Chemother 44:411–413 [CrossRef]
    [Google Scholar]
  11. Flannagan S. E., Clewell D. B. 1991; Conjugative transfer of Tn 916 in Enterococcus faecalis : trans activation of homologous transposons. J Bacteriol 173:7136–7141
    [Google Scholar]
  12. Flannagan S. E., Zitzow L., Su Y. A., Clewell D. B. 1994; Nucleotide sequence of the 18-kb conjugative transposon Tn 916 from Enterococcus faecalis . Plasmid 32:350–354 [CrossRef]
    [Google Scholar]
  13. Fraser C. M., Norris S. J., Weinstock G. M. 30 other authors 1998; Complete genome sequence of Treponema pallidum , the syphilis spirochete. Science 281:375–388 [CrossRef]
    [Google Scholar]
  14. Gorbach S. 1999; Antibiotics and Clostridium difficile . N Engl J Med 341:1690–1691 [CrossRef]
    [Google Scholar]
  15. Hächler H., Berger-Bächi B., Kayser F. H. 1987; Genetic characterization of a Clostridium difficile erythromycin-clindamycin resistance determinant that is transferable to Staphylococcus aureus . Antimicrob Agents Chemother 31:1039–1045 [CrossRef]
    [Google Scholar]
  16. Hayter P. M., Dale J. W. 1984; Detection of plasmids in clinical isolates of Clostridium difficile . Microbios Lett 27:151–156
    [Google Scholar]
  17. Jaworski D. D., Clewell D. B. 1995; A functional origin of transfer ( oriT ) on the conjugative transposon Tn 916 . J Bacteriol 177:6644–6651
    [Google Scholar]
  18. Johnson S., Samore M. H., Farrow K. A. 9 other authors 1999; Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N Engl J Med 341:1645–1651 [CrossRef]
    [Google Scholar]
  19. Kawarabayasi Y., Sawada M., Horikawa H. 22 other authors 1998; Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76 [CrossRef]
    [Google Scholar]
  20. Kelly C., LaMont J. T. 1998; Clostridium difficile infection. Annu Rev Med 49:375–390 [CrossRef]
    [Google Scholar]
  21. Koide Y., Nakamura A., Uozumi T., Beppu T. 1986; Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis . J Bacteriol 167:110–116
    [Google Scholar]
  22. Klenk H. P., Clayton R. A., Tomb J. F. 48 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus . Nature 390:364–370 [CrossRef]
    [Google Scholar]
  23. Leclercq R., Courvalin P. 1991; Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35:1267–1272 [CrossRef]
    [Google Scholar]
  24. Levett P. N. 1988; Antimicrobial susceptibility of Clostridium difficile determined by disc diffusion and breakpoint methods. J Antimicrob Chemother 22:167–173 [CrossRef]
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mullany P., Wilks M., Lamb I., Clayton C., Wren B. W., Tabaqchali S. 1990; Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis . J Gen Microbiol 136:1343–1349 [CrossRef]
    [Google Scholar]
  27. Mullany P., Wilks M., Tabaqchali S. 1995; Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn 5398 . J Antimicrob Chemother 35:305–315 [CrossRef]
    [Google Scholar]
  28. Nakamura S., Yamakawa K., Nakashio S., Kamiya S., Nishida S. 1987; Correlation between susceptibility to chloramphenicol, tetracycline and clindamycin, and serogroups of Clostridium difficile . Med Microbiol Immunol 176:79–82
    [Google Scholar]
  29. Palumbo J. D., Kado C. I., Phillips D. A. 1998; An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113
    [Google Scholar]
  30. Riley T., Codde J., Rouse I. 1995; Increased length of hospital stay due to Clostridium difficile associated diarrhoea. Lancet 345:455–456
    [Google Scholar]
  31. Roberts A. P., Johanesen P. A., Lyras D., Mullany P., Rood J. I. 2001; Comparison of Tn 5397 from Clostridium difficile , Tn 916 from Enterococcus faecalis , and the CW459 tet (M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147:1243–1251
    [Google Scholar]
  32. Roberts M. C., McFarland L. V., Mullany P., Mulligan M. E. 1994; Characterization of the genetic basis of antibiotic resistance in Clostridium difficile . J Antimicrob Chemother 33:419–429 [CrossRef]
    [Google Scholar]
  33. Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J. I., Seppala H. 1999; Nomenclature for macrolide and macrolide-lincosamide-streptogramin B antibiotic resistance determinants. Antimicrob Agents Chemother 43:2823–2830
    [Google Scholar]
  34. Salyers A., Shoemaker N., Stevens A. M., Li L. 1995; Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 59:579–590
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sharpe M. E., Errington J. 1996; The Bacillus subtilis soj - spoOJ locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol 21:501–509 [CrossRef]
    [Google Scholar]
  37. Showsh S. A., Andrews R. E. Jr 1999; Analysis of the requirement for a pUB110 mob region during Tn 916 -dependent mobilization. Plasmid 41:179–186 [CrossRef]
    [Google Scholar]
  38. Simondsen R. P., Tollin G. 1980; Structure–function relations in flavodoxins. Mol Cell Biochem 33:13–24
    [Google Scholar]
  39. Smith C. J., Markowitz S. M., Macrina F. L. 1981; Transferable tetracycline resistance in Clostridium difficile . Antimicrob Agents Chemother 19:997–1003 [CrossRef]
    [Google Scholar]
  40. Sorokin A., Azevedo V., Zumstein E., Galleron N., Ehrlich S. D., Serror P. 1996; Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome. Microbiology 142:2005–2016 [CrossRef]
    [Google Scholar]
  41. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  42. Sulavik M. C., Dazer M., Miller P. F. 1997; The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. J Bacteriol 179:1857–1866
    [Google Scholar]
  43. Surova I. A., Revina L. P., Ianonis V. V., Kolesnikova L. A., Stepanov V. M. 1994; Primary structure of the intracellular serine proteinase from Bacillus amyloliquefaciens . III. Amino acid sequence of peptides obtained by hydrolysis with a Glu, Asp-specific proteinase. Reconstruction of the entire amino acid sequence of the proteinase. Bioorg Khim 20:1310–1326
    [Google Scholar]
  44. Takami H., Nakasone K., Hirama C., Takaki Y., Masui N., Fuji F., Nakamura Y., Inoue A. 1999; An improved physical and genetic map of the genome of alkaliphilic Bacillus sp.C-125. Extremophiles 3:21–28 [CrossRef]
    [Google Scholar]
  45. Takekawa S., Uozumi N., Tsukagoshi N., Udaka S. 1991; Proteases involved in generation of β- and α-amylases from a large amylase precursor in Bacillus polymyxa . J Bacteriol 173:6820–6825
    [Google Scholar]
  46. Tanaka M., Haniu M., Yasunobu F., Mayhew S. G. 1974a; The amino acid sequence of the Clostridium MP flavodoxin. J Biol Chem 249:4393–4396
    [Google Scholar]
  47. Tanaka M., Haniu M., Yasunobu F., Mayhew S. G., Massey V. 1974b; Correction of the amino acid sequence of Peptostreptococcus elsdenii flavodoxin. J Biol Chem 249:4397
    [Google Scholar]
  48. Wang R. F., Kushner S. R. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli . Gene 100:195–199 [CrossRef]
    [Google Scholar]
  49. Wilcox M. H. 1998; Treatment of Clostridium difficile infection. J Antimicrob Chemother 41:41–46
    [Google Scholar]
  50. Wren B. W., Mullany P., Clayton C., Tabaqchali S. 1988; Molecular cloning and genetic analysis of a chloramphenicol acetyltransferase determinant from Clostridium difficile . Antimicrob Agents Chemother 32:1213–1217 [CrossRef]
    [Google Scholar]
  51. Wüst J., Hardegger U. 1983; Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile . Antimicrob Agents Chemother 23:784–786 [CrossRef]
    [Google Scholar]
  52. Wüst J., Hardegger U. 1988; Studies on the resistance of Clostridium difficile to antimicrobial agents. Zentbl Bakteriol Mikrobiol Hyg (A) 267:383–394
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-10-2717
Loading
/content/journal/micro/10.1099/00221287-147-10-2717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error