1887

Abstract

Lipopolysaccharide (LPS) of Gram-negative bacteria and several surface components of Gram-positive bacteria utilize CD14 and CD11a/18 as cellular receptors to induce expression and release of cytokines. Of the surface components of Gram-negative bacteria, porins exhibit a biological activity similar to that of LPS. The results in this paper show that the mechanism of stimulation by porins of THP-1 cells enriched in CD14 receptor after treatment with 1,25-dihydroxyvitamin D (vitamin D) is independent of this receptor, but is partially dependent on CD11a/18 integrins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2697
2001-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472697a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2697&mimeType=html&fmt=ahah

References

  1. Antal-Szalmas P., Weersink A. J. L., Verhoef J., van Kessel K. P. M., van Strjp J. A. G. 1997; Quantitation of surface CD 14 on human monocytes and neutrophils. J Leukocyte Biol 61:721–728
    [Google Scholar]
  2. Betz S., Morrison D. C. 1977; Chemical and biological properties of a protein-rich fraction of bacterial LPS: the in vitro murine lymphocyte response. J Immunol 119:1475–1480
    [Google Scholar]
  3. Chaudhary P. M., Ferguson C., Nguyen V. 7 other authors 1998; Cloning and characterization of two Toll/interleukin-1 receptor-like genes TIL3 and TIL4 : evidence for a multi-gene receptor family in humans. Blood 91:4020–4027
    [Google Scholar]
  4. Cleveland M. G., Gorham J. D., Murphy T. L., Tuomanen E., Murphy K. M. 1996; Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immun 64:1906–1912
    [Google Scholar]
  5. Crauwels A., Wan E., Leismann M., Tuomanen E. 1997; Coexistence of CD14-dependent and independent pathway for stimulation of human monocytes by gram-positive bacteria. Infect Immun 65:3255–3260
    [Google Scholar]
  6. Doe W. F., Yang S. T., Morrison D. C., Betz S. J., Hensen P. M. 1978; Macrophage stimulation by bacterial lipopolysaccharides. II. Evidence for differentiation signals delivered by lipid A and by a protein rich fraction of lipopolysaccharides. J Exp Med 148:557–568 [CrossRef]
    [Google Scholar]
  7. Espevik T., Otterrei M., Skjak-Braek G., Ryan L., Wright S. D., Sudan A. 1993; The involvement of CD14 in stimulation of cytokine production by uronic acids. Eur J Immunol 23:255–261 [CrossRef]
    [Google Scholar]
  8. Evans M. E., Pollack M. 1993; Effect of antibiotic class and concentration on the release of lipopolysaccharide from Escherichia coli. J Infect Dis 167:1336–1343 [CrossRef]
    [Google Scholar]
  9. Fleit H. B., Kobasiuk C. D. 1991; The human monocyte-like line THP-1 expresses Fc gamma RI and Fc gamma RII. J Leukocyte Biol 49:556–565
    [Google Scholar]
  10. van Furth A. M., Verhard-Seijmonsbergen E. M., Langermans J. A. M., van Dissel J. T., van Furth R. 1999; Anti-CD14 monoclonal antibodies inhibit the production of tumor necrosis factor alpha and interleukin-10 by human monocytes stimulated with killed and live Haemophilus influenzae or Streptococcus pneumoniae organisms. Infect Immun 67:3714–3718
    [Google Scholar]
  11. Galanos C., Luderitz O., Westphal O. 1969; A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249 [CrossRef]
    [Google Scholar]
  12. Galdiero F., Tufano M. A., Sommese L., Galdiero E. 1988; Protection of Escherichia coli K12 structural integrity by Ca2+ and Mg2+ in bactericidal and bacteriolytic tests. Microbiologica 11:21–27
    [Google Scholar]
  13. Galdiero F., Tufano M. A., Galdiero M., Masiello S., Di Rosa M. 1990; Inflammatory effects of Salmonella typhimurium porins. Infect Immun 58:3183–3188
    [Google Scholar]
  14. Galdiero F., Benedetto N., Galdiero M., Tufano M. A., Cipollaro de l’Ero G. 1993; Release of cytokines by Salmonella typhimurium porins. Infect Immun 61:155–161
    [Google Scholar]
  15. Galdiero F., Sommese L., Scarfogliero P., Galdiero M. 1994; Biological activities, lethality, Shwartzman reaction and pyrogenicity of Salmonella typhimurium porins. Microb Pathog 16:111–116 [CrossRef]
    [Google Scholar]
  16. Galdiero M., Donnarumma G., Marcatili A., Galdiero F., Cipollaro de l’Ero G. 1995; Interleukin-1 and interleukin-6 gene expression in human monocytes stimulated with Salmonella typhimurium porins. Immunology 86:612–619
    [Google Scholar]
  17. Galdiero M., Brancaccio F., Nazzaro C., De Martino L. 1998; Salmonella typhimurium porin internalization by leukocytes. Res Microbiol 9:625–630
    [Google Scholar]
  18. Galdiero M., D’Amico M., Gorga F., Di Filippo C., D’Isanto M., Vitiello M., Longanella A., Tortora A. 2001; Haemophilus influenzae porin contributes to signaling of the inflammatory cascade in rat brain. Infect Immun 69:221–227 [CrossRef]
    [Google Scholar]
  19. Gegner J. A., Ulevitch R. J., Tobias P. S. 1995; Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14. J Biol Chem 270:5320–5325 [CrossRef]
    [Google Scholar]
  20. Goldman R. C., White D., Leive L. 1981; Identification of outer membrane proteins including known lymphocyte mitogens of the endotoxin protein of E. coli O111. J Immunol 127:1290–1294
    [Google Scholar]
  21. Goodman G., Sultzer B. 1979a; Further studies on the activation of lymphocytes by endotoxin protein. J Immunol 122:1329–1335
    [Google Scholar]
  22. Goodman G., Sultzer B. 1979b; Characterization of the chemical and physical properties of a novel B-lymphocyte activator, endotoxin protein. Infect Immun 24:685–696
    [Google Scholar]
  23. Hailman E., Lichenstein H. S., Wurefel M. M., Miller D. S., Johnson D. A., Kelly M., Busse L. A., Zukowski M. M., Wright S. D. 1994; Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD 14. J Exp Med 179:269–277 [CrossRef]
    [Google Scholar]
  24. Haziot A., Ferrero E., Kontgen F., Hijiya N., Yamamoto S., Silver J., Stewart C. L., Goyert S. M. 1996; Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD 14-deficient mice. Immunity 4:407–414 [CrossRef]
    [Google Scholar]
  25. Hellman J., Loiselle P. M., Tehan M. M., Allaire J. E., Boyle L. A., Kurnick J. T., Andrews D. M., Kim K. S., Warren H. S. 2000; Outer membrane protein A, peptidoglycan-associated lipoprotein, and murein lipoprotein are released by Escherichia coli bacteria into serum. Infect Immun 68:2566–2572 [CrossRef]
    [Google Scholar]
  26. Henderson B., Poole S., Wilson M. 1996; Bacterial modulins: novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol Rev 60:316–341
    [Google Scholar]
  27. Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S. 1999; Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immnunol 162:3749–3752
    [Google Scholar]
  28. Ingalls R. R., Golenboch D. T. 1995; CD11c/CD18, a transmembrane signalling receptor for lipopolysaccharide. J Exp Med 181:1473–1479 [CrossRef]
    [Google Scholar]
  29. Ingalls R. R., Arnaout M. A., Golenbock D. T. 1997; Outside-in signalling by lipopolysaccharide through a tailless integrin. J Immunol 159:433–438
    [Google Scholar]
  30. Iovane G., Pagnini P., Galdiero M., Cipollaro de L’Ero G., Vitiello M., D’Isanto M., Marcatili A. 1998; Role of Pasteurella multocida porin on cytokine expression and release by murine splenocytes. Vet Immunol Immunopathol 66:391–404 [CrossRef]
    [Google Scholar]
  31. Juan T. S., Kelly M. J., Johnson D. A., Busse L. A., Hailman E., Wright S. D., Lichenstein H. S. 1995; Soluble CD14 truncated at amino acid 152 binds lipopolysaccharide (LPS) and enables cellular response to LPS. J Biol Chem 270:1382–1387 [CrossRef]
    [Google Scholar]
  32. Kitchens R. L., Ulevitch R. J., Munford R. S. 1992; Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med 176:485–494 [CrossRef]
    [Google Scholar]
  33. Kusunoki T., Hailman E., Juan T. S., Lichenstein H. S., Wright S. D. 1995; Molecules from Staphylococcus aureus that bind CD14 and stimulate immune responses. J Exp Med 182:1673–1682 [CrossRef]
    [Google Scholar]
  34. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  35. Morrison D. C., Jacobs D. M. 1976; Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13:813–818 [CrossRef]
    [Google Scholar]
  36. Morrison D. C., Betz S. J., Jacobs D. M. 1976; Isolation of a lipid A bound polypeptide responsible for LPS-initiated mitogenesis of C3H/He J spleen cells. J Exp Med 144:840–850 [CrossRef]
    [Google Scholar]
  37. Nikaido H., Vaara M. 1987; Outer membrane. . In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology vol. 1 pp 7–22 Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Nurminem M. 1985; Isolation of porin trimers. In Enterobacterial Surface Antigens Methods for Molecular CharacterizationFEMS Symposium 25 pp 294–299 Edited by Korhonen T. K., Dawes E. A., Makela P. Amsterdam: Elsevier;
    [Google Scholar]
  39. Soell M., Lett E., Holveck F., Scholler M., Wachsmann D., Klein J. P. 1995; Activation of human monocytes by streptococcal rhamnoseglucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release. J Immunol 154:851–860
    [Google Scholar]
  40. Sultzer B. M., Goodman G. W. 1976; Endotoxin protein: a B-cell mitogen and polyclonal activator of C3H/He J lymphocytes. J Exp Med 144:821–830 [CrossRef]
    [Google Scholar]
  41. Tabeta K., Yamazaki K., Akashi S., Miyake K., Kumada H., Umemoto T., Yoshie H. 2000; Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun 68:3731–3735 [CrossRef]
    [Google Scholar]
  42. Thye Yin E., Galanos C., Kinsky S., Bradshaw R. A., Wessler S., Luderity O., Sarmiento M. F. 1972; Picogram sensitive assay for endotoxin: gelation of Limulus polyphemus blood cell lysate induced by purified lipopolysaccharide and lipid A from Gram negative bacteria. Biochim Biophys Acta 9:245–249
    [Google Scholar]
  43. Tsai C. M., Frasch C. E. 1982; A sensitive silver-stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [CrossRef]
    [Google Scholar]
  44. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. 1980; Establishment and characterization of a human acute monocytic leukaemia cell line (THP-1. Int J Cancer 26:171–175 [CrossRef]
    [Google Scholar]
  45. Tufano M. A., Berlingieri M. T., Sommese L., Galdiero F. 1984; Immune response in mice and effects on cells by outer membrane porins from Salmonella typhimurium . Microbiologica 7:353–366
    [Google Scholar]
  46. Ulevitch R. J., Tobias P. S. 1994; Recognition of endotoxin by cells leading to transmembrane signalling. Curr Opin Immunol 6:125–130 [CrossRef]
    [Google Scholar]
  47. Ulevitch R. J., Tobias P. S. 1995; Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13:437–457 [CrossRef]
    [Google Scholar]
  48. Vazque-Torres A., Ferric C. F. 2000; Cellular routes of invasion by enteropathogens. Curr Opin Microbiol 3:54–59 [CrossRef]
    [Google Scholar]
  49. Vesy C. J., Kitchens R. L., Wolfbauer G., Albers J. J., Munford R. S. 2000; Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes. Infect Immun 68:2410–2417 [CrossRef]
    [Google Scholar]
  50. Viriyakosol S., Kirkland T. N. 1995; A region of human CD14 required for lipopolysaccharide binding. J Biol Chem 270:361–368 [CrossRef]
    [Google Scholar]
  51. Weidemann B., Brade H., Rietschel E. T., Dziarski R., Bazil V., Kusumoto S., Flad H. D., Ulmer A. J. 1994; Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infect Immun 62:4709–4715
    [Google Scholar]
  52. Wilson M., Seymour R., Henderson B. 1998; Bacterial perturbation of cytokine networks. Infect Immun 66:2401–2409
    [Google Scholar]
  53. Wright S. D. 1995; CD14 and innate recognition of bacteria. J Immunol 155:6–8
    [Google Scholar]
  54. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. 1990; CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433 [CrossRef]
    [Google Scholar]
  55. Yang R. B., Mark M. R., Gray A. 7 other authors 1998; Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284–288 [CrossRef]
    [Google Scholar]
  56. Zhang Y., Doerfler M., Lee T. C., Guillemin B., Rom W. N. 1993; Mechanisms of stimulation of interluekin-1 beta and tumour necrosis factor-alpha by Mycobacterium tuberculosis components. J Clin Invest 91:2076–2083 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2697
Loading
/content/journal/micro/10.1099/00221287-147-10-2697
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error