1887
Preview this article:
Zoom in
Zoomout

Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives, Page 1 of 1

| /docserver/preview/fulltext/micro/147/10/1472635a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2635
2001-10-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472635a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2635&mimeType=html&fmt=ahah

References

  1. Arneborg, N., Jesperson, L. & Jakobsen, M. ( 2000; ). Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol 174, 125-128.[CrossRef]
    [Google Scholar]
  2. Bauer, B. E., Wolfger, H. & Kuchler, K. ( 1999; ). Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461, 217-236.[CrossRef]
    [Google Scholar]
  3. Bracey, D., Holyoak, C. D. & Coote, P. J. ( 1998; ). Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH? J Appl Microbiol 85, 1056-1066.[CrossRef]
    [Google Scholar]
  4. Casal, M., Cardoso, H. & Leão, C. ( 1996; ). Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142, 1385-1390.[CrossRef]
    [Google Scholar]
  5. Cheng, L. & Piper, P. W. ( 1994; ). Weak acid preservatives block the heat shock response and heat-shock-element-directed lacZ expression of low pH Saccharomyces cerevisiae cultures, an inhibitory action partially relieved by respiratory deficiency. Microbiology 140, 1085-1096.[CrossRef]
    [Google Scholar]
  6. Cheng, L., Moghraby, J. & Piper, P. W. ( 1999; ). Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiol Lett 170, 89-95.[CrossRef]
    [Google Scholar]
  7. Cole, M. B. (1987). The effect of weak acids and pH on Zygosaccharomyces bailii. PhD thesis, University of East Anglia.
  8. Deak, T. ( 1991; ). Food borne yeasts. Adv Appl Microbiol 36, 179-278.
    [Google Scholar]
  9. De Nobel, J. G. & Barnett, J. A. ( 1991; ). Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7, 313-323.[CrossRef]
    [Google Scholar]
  10. Fleet, G. ( 1992; ). Spoilage yeasts. Crit Rev Biotechnol 12, 1-44.[CrossRef]
    [Google Scholar]
  11. Henriques, M., Quintas, C. & Loureiro-Dias, M. C. ( 1997; ). Extrusion of benzoic acid in Saccharomyces cerevisiae by an energy-dependent mechanism. Microbiology 143, 1877-1883.[CrossRef]
    [Google Scholar]
  12. Holyoak, C. D., Stratford, M., McMullin, Z., Cole, M. B., Crimmins, K., Brown, A. J. & Coote, P. J. ( 1996; ). Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62, 3158-3164.
    [Google Scholar]
  13. Holyoak, C. D., Bracey, D., Piper, P. W., Kuchler, K. & Coote, P. J. ( 1999; ). The Saccharomyces cerevisiae weak acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181, 4644-4652.
    [Google Scholar]
  14. Holyoak, C. D., Thompson, S., Ortiz Calderon, C., Hatzixanthis, K., Bauer, B., Kuchler, K., Piper, P. W. & Coote, P. J. ( 2000; ). Loss of Cmk1 Ca2+/calmodulin-dependent protein kinase in yeast results in constitutive weak organic acid resistance, associated with a posttranscriptional activation of the Pdr12 ATP-binding cassette transporter. Mol Microbiol 37, 595-605.
    [Google Scholar]
  15. Kalathenos, P., Sutherland, J. P. & Roberts, T. A. ( 1995; ). Resistance of some wine spoilage yeasts to combinations of ethanol and acids present in wine. J Appl Bacteriol 78, 245-250.[CrossRef]
    [Google Scholar]
  16. Krebs, H. A., Wiggins, D., Stubbs, M., Sols, A. & Bedoya, F. ( 1983; ). Studies on the mechanism of the antifungal action of benzoate. Biochem J 214, 657-663.
    [Google Scholar]
  17. Lawson, L. D. ( 1996; ). The composition and chemistry of garlic cloves and processed garlic. In Garlic. The Science and Therapeutic Application of Allium sativum L. and Related Species , pp. 37-107. Edited by H. P. Koch & L. D. Lawson. Baltimore:Williams & Wilkins.
  18. Leonhard, K., Guiard, B., Pellecchia, G., Tzagoloff, A., Neupert, W. & Langer, T. ( 2000; ). Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol Cell 5, 629-638.[CrossRef]
    [Google Scholar]
  19. Martinez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H. & Estruch, F. ( 1996; ). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227-2235.
    [Google Scholar]
  20. Mollapour, M. & Piper, P. W. ( 2001; ). Targeted gene deletion in Zygosaccharomyces bailii. Yeast 18, 173-186.[CrossRef]
    [Google Scholar]
  21. Panaretou, B. & Piper, P. W. ( 1992; ). The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem 206, 635-640.[CrossRef]
    [Google Scholar]
  22. Pearce, A. K., Booth, I. R. & Brown, A. J. P. ( 2001; ). Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiology 147, 403-410.
    [Google Scholar]
  23. Pilkington, B. J. & Rose, A. H. ( 1988; ). Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite. J Gen Microbiol 134, 2823-2830.
    [Google Scholar]
  24. Piper, P. W. ( 1999; ). Yeast superoxide dismutase mutants reveal a prooxidant action of weak organic acid food preservatives. Free Radic Biol Med 27, 1219-1227.[CrossRef]
    [Google Scholar]
  25. Piper, P. W., Ortiz-Calderon, C., Holyoak, C., Coote, P. & Cole, M. ( 1997; ). Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane ATPase. Cell Stress Chaperones 2, 12-24.[CrossRef]
    [Google Scholar]
  26. Piper, P., Mahé, Y., Thompson, S., Pandjaitan, R., Holyoak, C., Egner, R., Mühlbauer, M., Coote, P. & Kuchler, K. ( 1998; ). The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17, 4257-4265.[CrossRef]
    [Google Scholar]
  27. Pretorius, I. S. ( 2000; ). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16, 675-729.[CrossRef]
    [Google Scholar]
  28. Russell, A. D. ( 1991; ). Mechanisms of bacterial resistance to non-antibiotics: food additives and food and pharmaceutical preservatives. J Appl Bacteriol 71, 191-201.[CrossRef]
    [Google Scholar]
  29. Salmond, C. V., Kroll, R. G. & Booth, I. R. ( 1984; ). The effects of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130, 2845-2850.
    [Google Scholar]
  30. Serrano, R. ( 1991; ). Transport across yeast vacuolar and plasma membranes. In The Molecular Biology of the Yeast Saccharomyces , pp. 523-586. Edited by J. R. Broach, J. Pringle & E. W. Jones. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.
  31. Seymour, I. J. & Piper, P. W. ( 1999; ). Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145, 231-239.[CrossRef]
    [Google Scholar]
  32. Sousa, M. J., Miranda, L., Cõrte-Real, M. & Leão, C. ( 1996; ). Transport of acetic-acid in Zygosaccharomyces bailii – effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl Environ Microbiol 62, 3152-3157.
    [Google Scholar]
  33. Sousa, M. J., Rodrigues, F., Cõrte-Real, M. & Leão, C. ( 1998; ). Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology 144, 665-670.[CrossRef]
    [Google Scholar]
  34. Steels, H., James, S. A., Roberts, I. N. & Stratford, M. ( 1999; ). Zygosaccharomyces lentus: a significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. J Appl Microbiol 87, 520-527.[CrossRef]
    [Google Scholar]
  35. Steels, H., James, S. A., Roberts, I. N. & Stratford, M. ( 2000; ). Sorbic acid resistance: the inoculum effect. Yeast 16, 1173-1183.[CrossRef]
    [Google Scholar]
  36. Stratford, M. & Anslow, P. A. ( 1996; ). Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids. FEMS Microbiol Lett 142, 53-58.[CrossRef]
    [Google Scholar]
  37. Stratford, M. & Anslow, P. A. ( 1998; ). Evidence that sorbic acid does not inhibit yeast as a classic ‘‘weak acid preservative’’. Lett Appl Microbiol 27, 203-206.[CrossRef]
    [Google Scholar]
  38. Tenreiro, S., Rosa, P. C., Viegas, C. A. & Sa-Correia, I. ( 2000; ). Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16, 1469-1481.[CrossRef]
    [Google Scholar]
  39. Thomas, D. S. & Davenport, R. R. ( 1985; ). Zygosaccharomyces bailii – a profile of characteristics and spoilage activities. Food Microbiol 2, 157-169.[CrossRef]
    [Google Scholar]
  40. Verduyn, C., Postma, E., Scheffers, W. A. & Van Dijken, J. P. ( 1992; ). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501-517.[CrossRef]
    [Google Scholar]
  41. Viegas, C. A. & Sa-Correia, I. ( 1991; ). Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol 137, 645-651.[CrossRef]
    [Google Scholar]
  42. Warth, A. D. ( 1977; ). Mechanism of resistance of Saccharomyces bailii to benzoic, sorbic and other weak acids used as food preservatives. J Appl Bacteriol 43, 215-230.[CrossRef]
    [Google Scholar]
  43. Warth, A. D. ( 1988; ). Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Appl Environ Microbiol 54, 2091-2095.
    [Google Scholar]
  44. Warth, A. D. ( 1989; ). Transport of benzoic and propanoic acids by Zygosaccharomyces bailii. J Gen Microbiol 135, 1383-1390.
    [Google Scholar]
  45. Warth, A. D. & Nickerson, K. W. ( 1991; ). Mechanism of action of benzoic acid on Zygosaccharomyces bailii – effects on glycolytic metabolite levels, energy production, and intracellular pH. Appl Environ Microbiol 57, 3410-3414.
    [Google Scholar]
  46. Weber, F. J. & de Bont, J. A. M. ( 1996; ). Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286, 225-245.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2635
Loading
/content/journal/micro/10.1099/00221287-147-10-2635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error