CE2010 can assimilate biphenyl despite its high similarity to F1. Biphenyl degradation in strain CE2010 was achieved using a mosaic of pathways consisting of the and operons. CmtE hydrolysed 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, the -cleavage product of 2,3-dihydroxybiphenyl. This enzyme was expressed differently in strains CE2010 and F1. A disruption mutant, a operon disruption mutant and a operon disruption mutant were unable to utilize biphenyl. The introduction of the gene enabled the operon disruption mutant to grow on biphenyl. A single base difference was found in the promoter–operator region in strain CE2010, compared with that of strain F1. CymR protein was purified from and binding assays were performed, the results of which suggested that the protein bound less strongly to the CE2010 operator sequence than to the F1 operator sequence. Exchanging the F1 promoter–operator fragment into strain CE2010 resulted in a loss of biphenyl degradation capacity. These results indicate that is not effectively repressed by CymR in strain CE2010, leading to low constitutive expression and, therefore, low growth on biphenyl.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ahmad, D., Fraser, J., Sylvestre, M., Larose, A., Khan, A., Bergeron, J., Juteau, J. M. & Sondossi, M.(1995). Sequence of the bphD gene encoding 2-hydroxy-6-oxo-(phenyl/chlorophenyl)-hexa-2,4-dienoic acid (HOP/cPDA) hydrolase involved in the biphenyl/polychlorinated biphenyl degradation pathway in Comamonas testosteroni: evidence suggesting involvement of Ser112 in catalytic activity. Gene 156, 69-74.[CrossRef] [Google Scholar]
  2. Anderson, M. L. & Young, B. D.(1985). Quantitative filter hybridization. In Nucleic Acid Hybridization , pp. 73-110. Edited by B. D. Hames & S. J. Higgins. Oxford:IRL Press.
  3. Bradford, M. M.(1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef] [Google Scholar]
  4. Catelani, D., Colombi, A., Sorlini, C. & Treccani, V.(1973). 2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate: the meta-cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem J 134, 1063-1066. [Google Scholar]
  5. Eaton, R. W.(1996).p-Cumate catabolic pathway in Pseudomonas putida F1: Cloning and characterization of DNA carrying the cmt operon. J Bacteriol 178, 1351-1362. [Google Scholar]
  6. Eaton, R. W.(1997).p-Cymene catabolic pathway in Pseudomonas putida F1: Cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179, 3171-3180. [Google Scholar]
  7. Fürste, J. P., Pansegrau, W., Frank, R., Blocker, H., Scholz, P., Bagdasarian, M. & Lnaka, E.(1986). Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48, 119-131.[CrossRef] [Google Scholar]
  8. Furukawa, K., Hirose, J., Suyama, A., Zaiki, T. & Hayashida, S.(1993). Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J Bacteriol 175, 5224-5232. [Google Scholar]
  9. Gibson, D. T., Koch, J. R. & Kallio, R. E.(1968). Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochem 7, 2653-2662.[CrossRef] [Google Scholar]
  10. Harayama, S. & Rekik, S.(1990). The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes. Mol Gen Genet 221, 113-120.[CrossRef] [Google Scholar]
  11. Harayama, S., Rekik, M., Bairoch, A., Neidle, E. L. & Ornston, L. N.(1991). Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWWO plasmid xylXYZ, genes encoding benzoate dioxygenases. J Bacteriol 173, 7540-7548. [Google Scholar]
  12. Harley, C. B. & Reynolds, R. P.(1987). Analysis of E. coli promoter sequences. Nucleic Acids Res 15, 2347-2351. [Google Scholar]
  13. Hayase, N., Taira, K. & Furukawa, K.(1990).Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J Bacteriol 172, 1160-1164. [Google Scholar]
  14. Hofer, B., Eltis, L. D., Dowling, D. N. & Timmis, K. N.(1993). Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene. 130, 47-55.[CrossRef] [Google Scholar]
  15. Horn, J. M., Harayama, S. & Timmis, K. N.(1991). DNA sequence determination of the TOL plasmid (pWW0) xylGFJ genes of Pseudomonas putida: implication for the evolution of aromatic catabolism. Mol Microbiol 5, 2459-2474.[CrossRef] [Google Scholar]
  16. Irie, S., Doi, S., Yorifuji, T., Takagi, M. & Yano, K.(1987). Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida. J Bacteriol 169, 5174-5179. [Google Scholar]
  17. Kimbara, K., Hashimoto, T., Fukuda, M., Koana, T., Takagi, M., Oishi, M. & Yano, K.(1989). Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol 171, 2740-2747. [Google Scholar]
  18. Lau, P. C. K., Bergeron, H., Labbe, D., Wang, Y., Brousseau, R. & Gibson, D. T.(1994). Sequence and expression of the todGIH gene involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene 146, 7-13.[CrossRef] [Google Scholar]
  19. Lau, P. C. K., Garnon, J., Labbe, D. & Wang, Y.(1996). Location and sequence analysis of a 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase-encoding gene (bpdF) of the biphenyl/polychlorinated biphenyl degradation pathway in Rhodococcus sp. M5. Gene 171, 53-57.[CrossRef] [Google Scholar]
  20. Lau, P. C. K., Wang, Y., Patel, A., Labbe, D., Bergeron, H., Brousseau, R., Konishi, Y. & Rauslings, M.(1997). A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci U S A 94, 1453-1458.[CrossRef] [Google Scholar]
  21. Lorenzo, V. D. & Perez-Martin, J.(1996). Regulatory noise in prokaryotic promoters: how bacteria learn to respond to novel environment signals. Mol Microbiol 19, 1177-1184.[CrossRef] [Google Scholar]
  22. Maeda, M., Chung, S.-Y., Song, E. & Kudo, T.(1995). Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the Gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 61, 549-555. [Google Scholar]
  23. Masai, E., Sugiyama, K., Iwashita, N., Shimizu, S., Hauschild, J. E., Hatta, T., Kimbara, K., Yano, K. & Fukuda, M.(1997). The bphDEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA1. Gene 187, 141-149.[CrossRef] [Google Scholar]
  24. Meer, J. R. V. D., Vos, W. M. D., Harayama, S. & Zehnder, A. J. B.(1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56, 677-694. [Google Scholar]
  25. Menn, F. M., Zylstra, G. J. & Gibson, D. T.(1991). Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 104, 91-94.[CrossRef] [Google Scholar]
  26. Nagata, Y., Imai, R., Sakai, A., Fukuda, M., Yano, K. & Takagi, M.(1993). Isolation and characterization of Tn-induced mutants of Pseudomonas paucimobilis UT26 defective in r-hexachlorocyclohexane dehydrochlorinase (LinA). Biosci Biotechnol Biochem 57, 703-709.[CrossRef] [Google Scholar]
  27. Ohta, Y., Maeda, M., Kudo, T. & Horikoshi, K.(1996). Isolation and characterization of solvent-tolerant bacteria which can degrade biphenyl/polychlorinated biphenyls. J Gen Appl Microbiol 42, 349-354.[CrossRef] [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Seah, S. Y. K., Terracina, G., Bolin, J. T., Riebel, P., Snieckus, V. & Eltis, L. D.(1998). Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls. J Biol Chem 273, 22943-22949.[CrossRef] [Google Scholar]
  30. Southern, E. M.(1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98, 503-517.[CrossRef] [Google Scholar]
  31. Wang, Y., Rawlings, M., Gibson, D. T., Labbe, D., Bergeron, H., Brousseau, R. & Lau, P. C. K.(1995). Identification of a membrane protein and a truncated lysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246, 570-579.[CrossRef] [Google Scholar]
  32. Wilson, K. (1990). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, H. A. Smith & K. Struhl. New York: Greene Publishing Association and Wiley.
  33. Zylstra, G. J. & Gibson, D. T.(1989). Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264, 14940-14946. [Google Scholar]
  34. Zylstra, G. J., McCombie, W. R., Gibson, D. T. & Finette, B. A.(1988). Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54, 1498-1503. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error