1887

Abstract

The gene product is a member of the subfamily of small GTP-binding proteins that have been identified in diverse organisms ranging from bacteria to humans. In bacteria that sporulate or display another special developmental programme, this gene (referred to as , or ) appears to be involved in the regulation of these processes. However, this gene has also been found to be essential in all bacterial species investigated to date, although its role in bacteria that do not sporulate and do not undergo a specific development remains unknown. Here the authors characterize a mutant bearing a transposon insertion into the gene. This mutant reveals a multiple phenotype: it grows more slowly than the wild-type strain in a rich medium; its growth is completely inhibited in minimal media; its survival in 3% NaCl is dramatically reduced; it is very sensitive to UV irradiation; it is more susceptible to mutation upon treatment with different mutagens; its luminescence is decreased; its quorum-sensing regulation is less effective than in the wild-type strain; and the elongated shape of the mutant cells may suggest problems with the regulation of cell division and/or DNA replication. These defects in diverse cellular processes found in the insertional mutant of indicate that in a bacterium that does not sporulate and does not display other special development programmes, the CgtA protein is involved in the regulation of many crucial biochemical reactions, possibly at the stage of signal transduction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-1-183
2001-01-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/1/1470183a.html?itemId=/content/journal/micro/10.1099/00221287-147-1-183&mimeType=html&fmt=ahah

References

  1. Arigoni, F., Talabot, F., Peitsch, M., Edgerton, M. D., Meldrum, E., Allet, E., Fish, R., Jamotte, T., Curchod, M.-L. & Loferer, H. ( 1998; ). A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16, 851-856.[CrossRef]
    [Google Scholar]
  2. Bassler, B. L. & Silverman, M. R. ( 1995; ). Intercellular communication in marine Vibrio: density-dependent regulation of the expression of bioluminescence. In Two-component Signal Transduction , pp. 431-445. Edited by J. A. Hoch & T. J. Silhavy. Washington, DC:American Society for Microbiology.
  3. Bassler, B. L., Wright, M. & Silverman, M. R. ( 1994; ). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13, 273-286.[CrossRef]
    [Google Scholar]
  4. Belas, R., Mileham, A., Cohn, D., Hilmen, M., Simon, M. & Silverman, M. ( 1982; ). Bacterial luminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science 218, 791-793.[CrossRef]
    [Google Scholar]
  5. Britton, R. A., Powell, B. S., Court, D. L. & Lupski, J. R. ( 1997; ). Characterization of mutations affecting the Escherichia coli essential GTPase Era that suppress two temperature-sensitive dnaG alleles. J Bacteriol 179, 4547-4582.
    [Google Scholar]
  6. Britton, R. A., Powell, B. S., Dasgupta, S., Sun, Q., Margolin, W., Lupski, J. R. & Court, D. ( 1998; ). Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol Microbiol 27, 739-750.[CrossRef]
    [Google Scholar]
  7. Cashel, M., Gentry, D. R., Hernandez, V. J. & Vinella, D. (1996). The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1458–1496. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  8. Chen, X., Court, D. L. & Xinhua, J. ( 1999; ). Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci USA 96, 8396-8401.[CrossRef]
    [Google Scholar]
  9. Czyż, A., Jasiecki, J., Bogdan, A., Szpilewska, H. & Węgrzyn, G. ( 2000a; ). Genetically modified Vibrio harveyi strains as potential bioindicators of mutagenic pollution of marine environments. Appl Environ Microbiol 66, 599-605.[CrossRef]
    [Google Scholar]
  10. Czyż, A., Wróbel, B. & Węgrzyn, G. ( 2000b; ). Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146, 283-288.
    [Google Scholar]
  11. Freeman, J. A. & Bassler, B. L. ( 1999a; ). A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31, 665-677.[CrossRef]
    [Google Scholar]
  12. Freeman, J. A. & Bassler, B. L. ( 1999b; ). Sequence and function of LuxU: a two-component phosphorelay protein that regulates a quorum sensing in Vibrio harveyi. J Bacteriol 181, 899-906.
    [Google Scholar]
  13. Freeman, J. A., Lilley, B. N. & Bassler, B. L. ( 2000; ). A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol Microbiol 35, 139-149.[CrossRef]
    [Google Scholar]
  14. Hause, B., Hause, G., Pechan, P. & Van Lammeren, A. A. M. ( 1993; ). Cytoskeletal changes and induction of embryogenesis in microscope and pollen cultures of Brassica napus L. Cell Biol Int 17, 153-168.[CrossRef]
    [Google Scholar]
  15. Klein, G., Walczak, R., Krasnowska, E, Błaszczak, A. & Lipińska, B. ( 1995; ). Characterization of heat-shock response of the marine bacterium Vibrio harveyi. Mol Microbiol 16, 801-811.[CrossRef]
    [Google Scholar]
  16. Klein, G., Żmijewski, M., Krzewska, J., Czeczatka, M. & Lipińska, B. ( 1998; ). Cloning and characteriaztion of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Mol Gen Genet 259, 179-189.[CrossRef]
    [Google Scholar]
  17. Kok, J., Trach, K. A. & Hoch, J. A. ( 1994; ). Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J Bacteriol 176, 7155-7160.
    [Google Scholar]
  18. Lerner, C. G. & Inouye, M. ( 1991; ). Pleiotropic changes resulting from depletion of Era, an essential GTP-binding protein in Escherichia coli. Mol Microbiol 5, 951-957.[CrossRef]
    [Google Scholar]
  19. MacKenzie, C., Chidambaram, C., Sodergren, E. J., Kaplan, S. & Weinstock, G. M. ( 1995; ). DNA repair mutants of Rhodobacter spheroides. J Bacteriol 177, 3027-3035.
    [Google Scholar]
  20. Meissner, P. S., Sisk, W. P. & Berman, M. L. ( 1987; ). Bacteriophage λ cloning system for the construction of directional cDNA libraries. Porc Natl Acad Sci USA 84, 4171-4175.[CrossRef]
    [Google Scholar]
  21. Okamoto, S. & Ochi, K. ( 1998; ). An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol 30, 107-119.[CrossRef]
    [Google Scholar]
  22. Quintarelli, G., Zito, R. & Cifonelli, J. A. ( 1971; ). On phosphotungstic acid staining. I. J Histochem Cytochem 19, 641-647.[CrossRef]
    [Google Scholar]
  23. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Sayed, A., Matsuyama, S. & Inouye, M. ( 1999; ). Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. Biochem Biophys Res Commun 264, 51-54.[CrossRef]
    [Google Scholar]
  25. Scott, J. M. & Haldenwang, W. G. ( 1999; ). Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor σB. J Bacteriol 181, 4653-4660.
    [Google Scholar]
  26. Sprang, S. R. ( 1997; ). G protein mechanisms: insights from structural analysis. Annu Rev Biochem 66, 639-678.[CrossRef]
    [Google Scholar]
  27. Spurr, A. R. ( 1969; ). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31-43.[CrossRef]
    [Google Scholar]
  28. Swift, S., Throup, J., Bycroft, B., Williams, P. & Stewart, G. ( 1998; ). Quorum sensing: bacterial cell–cell signaling from bioluminescence to patogenicity. In Molecular Microbiology , pp. 185-207. Edited by S. J. W. Busby, C. M. Thomas & N. L. Brown. Berlin-Heidelberg:Springer.
  29. Trach, K. & Hoch, J. A. ( 1989; ). The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171, 1362-1371.
    [Google Scholar]
  30. Vidwans, S. J., Ireton, K. & Grossman, A. D. ( 1995; ). Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J Bacteriol 177, 3308-3311.
    [Google Scholar]
  31. Węgrzyn, G. & Taylor, K. ( 1992; ). Inheritance of the replication complex by one of two daughter copies during λ plasmid replication in Escherichia coli. J Mol Biol 226, 681-688.[CrossRef]
    [Google Scholar]
  32. Węgrzyn, G., Kwaśnik, E. & Taylor, K. ( 1991; ). Replication of λ plasmid in amino acid-starved strains of Escherichia coli. Acta Biochim Pol 38, 181-186.
    [Google Scholar]
  33. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strain: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-1-183
Loading
/content/journal/micro/10.1099/00221287-147-1-183
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error