sp. NK8 grows abundantly on 3-chlorobenzoate (3CB),4-chlorobenzoate (4CB) and benzoate. The genes encoding the oxidation of (chloro)benzoates () and catechol (, ), the LysR-type regulatory gene and the gene with unknown function, all of which form a single cluster in NK8, were cloned and analysed. The protein sequence of chlorobenzoate 1,2-dioxygenase (CbeABC) is 50–65% identical to the benzoate dioxygenase (BenABC) of sp. ADP1, toluate dioxygenase (XylXYZ) of the TOL plasmid pWW0 and 2-halobenzoate dioxygenase (CbdABC) of 2CBS. Disruption of the gene resulted in the simultaneous loss of the ability to grow on benzoate and monochlorobenzoates, indicating the involvement of the genes in the degradation of these aromatics. The genes are preceded by , the gene for catechol dioxygenase. transcriptional fusion studies in showed that and are co-expressed under the positive control of , a LysR-type transcriptional regulatory gene. The :: transcriptional fusion studies showed that the inducers of the genes are 3CB, 4CB, benzoate and probably ,muconate. On the other hand, 2-chlorobenzoate (2CB) did not activate the expression of the genes. The chlorobenzoate dioxygenase was able to transform 2CB, 3CB, 4CB and benzoate at considerable rates. 2CB yielded both catechol and 3-chlorocatechol (3CC), and 3CB gave rise to 4-chlorocatechol and 3CC as the major and minor intermediate products, respectively, indicating that the NK8 dioxygenase lacks absolute regiospecificity. The absence of growth of NK8 on 2CB, despite its considerable degradation activity against 2CB, is apparently due to the inability of CbeR to recognize 2CB as an inducer of the expression of the genes.


Article metrics loading...

Loading full text...

Full text loading...



  1. Aldrich, T. L., Frantz, B., Gill, J. F., Kilbane, J. J. & Chakrabarty, A. M.(1987). Cloning and complete nucleotide sequence determination of the catB gene encoding cis,cis-muconate lactonizing enzyme. Gene 52, 185-195.[CrossRef] [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1987).Current Protocols in Molecular Biology. New York: Wiley.
  3. Batie, C. J., Ballou, D. P. & Correl, C. J.(1992). Phthalate dioxygenase reductase and related flavin-iron-sulfur-containing electron transferases. In Chemistry and Biochemistry of Flavoenzyme , pp. 544-554. Edited by F. Müller. Boca Raton, FL:CRC Press.
  4. Blondelet-Rouault, M., Weiser, J., Lebrihi, A., Branny, P. & Perdonet, J.(1997). Antibiotic resistance gene cassettes derived from the Ω interposon for use in E. coli and Streptomyces. Gene 190, 315-317.[CrossRef] [Google Scholar]
  5. Bundy, B. M., Campbell, A. L. & Neidle, E. L.(1998). Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J Bacteriol 180, 4466-4474. [Google Scholar]
  6. Collier, L. S., Gaines, G. L. & Neidle, E. L.(1998). Regulation of benzoate degradation in Acinetobacter calcoaceticus sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol 180, 2493-2501. [Google Scholar]
  7. Danganan, C. E., Ye, R. W., Daubaras, D. L., Xun, L. & Chakrabarty, A. M.(1994). Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Appl Environ Microbiol 11, 4100-4106. [Google Scholar]
  8. Daubaras, D. L. & Chakrabarty, A. M.(1992). The environment, microbes and bioremediation: microbial activities modulated by the environment. Biodegradation 3, 125-135.[CrossRef] [Google Scholar]
  9. Davison, J., Heusterspreute, M., Chavelier, N., Ha-Thi, V. & Brunel, F.(1987). Vectors with restriction-site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51, 275-280.[CrossRef] [Google Scholar]
  10. Dorn, E. & Knackmuss, H. J.(1978). Chemical structure and biodegradability of halogenated aromatic compounds: substituent effects on 1,2-dioxygenation of catechol. Biochem J 174, 85-94. [Google Scholar]
  11. Farinha, M. A. & Kropinski, A. M.(1990). Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172, 3496-3499. [Google Scholar]
  12. Fetzner, S., Müller, R. & Lingens, F.(1989). Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS. Biol Chem Hoppe-Seyler 370, 1173-1182.[CrossRef] [Google Scholar]
  13. Fetzner, S., Müller, R. & Lingens, F.(1992). Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS. J Bacteriol 174, 279-290. [Google Scholar]
  14. Focht, D. D.(1996). Biodegradation of chlorobenzoates. In Molecular Biology of Pseudomonas , pp. 71-80. Edited by T. Nakazawa, K. Furukawa, D. Haas & S. Silver. Washington, DC:American Society for Microbiology.
  15. Franklin, F. C. H.(1985). Broad host range cloning vectors for gram negative bacteria. In DNA Cloning , pp. 165-184. Edited by D. M. Glover. Oxford:IRL Press.
  16. Frantz, B. & Chakrabarty, A. M.(1987). Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc Natl Acad Sci USA 84, 4460-4464.[CrossRef] [Google Scholar]
  17. Haak, B., Fetzner, S. & Lingens, F.(1995). Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J Bacteriol 177, 667-675. [Google Scholar]
  18. Hanahan, D.(1985). Techniques for transformation of E. coli. In DNA Cloning , pp. 109-135. Edited by D. M. Glover. Oxford:IRL Press.
  19. Harayama, S., Rekik, M., Bairoch, A., Neidle, E. L. & Ornston, L. N.(1991). Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ genes, encoding benzoate dioxygenases. J Bacteriol 173, 7540-7548. [Google Scholar]
  20. Harwood, C. S. & Parales, R. E.(1996). The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50, 553-590.[CrossRef] [Google Scholar]
  21. Hickey, W. J. & Focht, D. D.(1990). Degradation of mono-, di-, and tri-halogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol 56, 3842-3850. [Google Scholar]
  22. Houghton, J. E., Brown, T. M., Appel, A. J., Hughes, E. J. & Ornston, L. N.(1995). Discontinuities in the evolution of Pseudomonas putida cat genes. J Bacteriol 177, 401-412. [Google Scholar]
  23. Jeffrey, W. H., Cuskey, S. M., Chapman, P. J., Resnik, S. & Olsen, R. H.(1992). Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of chromosomal DNA fragments able to substitute for xylS activation of TOL lower-pathway promoter. J Bacteriol 174, 4986-4996. [Google Scholar]
  24. Kim, S. I., Leem, S.-H., Choi, J.-S., Chung, Y. H., Kim, S., Park, Y.-M., Park, Y. K., Lee, Y. N. & Ha, K.-S.(1997). Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J Bacteriol 179, 5226-5231. [Google Scholar]
  25. Kokotek, W. & Lotz, W.(1989). Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene 84, 467-471.[CrossRef] [Google Scholar]
  26. de Lorenzo, V. & Timmis, K. N.(1994). Analysis and construction of stable phenotype in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235, 387-405. [Google Scholar]
  27. McFall, S. M., Chugani, S. A. & Chakrabarty, A. M.(1998). Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 223, 257-267.[CrossRef] [Google Scholar]
  28. van der Meer, J. R., de Vos, W. M., Harayama, S. & Zehnder, A. J. B.(1992). Molecular mechanism of genetic adaptation to xenobiotic compounds. Microbiol Rev 56, 677-694. [Google Scholar]
  29. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Murakami, S., Takashima, A., Takemoto, J., Takenaka, S., Shinke, R. & Aoki, K.(1999). Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline-assimilating bacterium Frateuria sp. ANA-18. Gene 226, 189-198.[CrossRef] [Google Scholar]
  31. Nakatsu, C. H. & Wyndham, R. C.(1993). Cloning and expression of the transposable chlorobenzoate 3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl Environ Microbiol 59, 3625-3633. [Google Scholar]
  32. Nakatsu, C. H., Straus, N. A. & Wyndham, R. C.(1995). The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141, 485-495.[CrossRef] [Google Scholar]
  33. Nakatsu, C. H., Providenti, M. & Wyndham, R. C.(1997). The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not on 3,4-dichlorobenzoate. Gene 196, 209-218.[CrossRef] [Google Scholar]
  34. Neidle, E. L., Shapiro, M. & Ornston, L. N.(1987). Cloning and expression in E. coli of Acinetobacter calcoaceticus genes for benzoate degradation. J Bacteriol 169, 5496-5503. [Google Scholar]
  35. Neidle, E. L., Hartnett, C., Ornston, L. N., Bairoch, A., Rekik, M. & Harayama, S.(1991). Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationship among multicomponent oxygenases. J Bacteriol 173, 5385-5395. [Google Scholar]
  36. Ogawa, N. & Miyashita, K.(1995). Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements. Appl Environ Microbiol 61, 3788-3795. [Google Scholar]
  37. Ogawa, N. & Miyashita, K.(1999). The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol 65, 724-731. [Google Scholar]
  38. Parales, R. E. & Harwood, C. S.(1993). Regulation of the pcaIJ genes for aromatic acid degradation in Pseudomonas putida. J Bacteriol 175, 5829-5838. [Google Scholar]
  39. Parsek, M. R., Shinabarger, D. L., Rothmel, R. K. & Chakrabarty, A. M.(1992). Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. J Bacteriol 174, 798-806. [Google Scholar]
  40. Reineke, W.(1998). Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52, 287-331.[CrossRef] [Google Scholar]
  41. Romanov, V. & Hausinger, R. P.(1994).Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate. J Bacteriol 176, 3368-3374. [Google Scholar]
  42. Romero-Arroyo, C. E., Schell, M. A., Gaines, G. L. & Neidle, E. L.(1995).catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus. J Bacteriol 177, 5891-5898. [Google Scholar]
  43. Rothmel, R. K., Aldrich, T. L., Houghton, J. E., Coco, W. M., Ornston, L. N. & Chakrabarty, A. M.(1990). Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of the catBC operon is a member of the LysR family. J Bacteriol 172, 922-931. [Google Scholar]
  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  45. Sauret-Ignazi, G., Gagnon, J., Beguin, C., Barrell, M., Marcowicz, Y., Pelmont, J. & Toussaint, A.(1996). Characterization of a chromosomally encoded catechol 1,2-dioxygenase (EC 1 . 13 . 11 . 1) from Alcaligenes eutrophus CH34. Arch Microbiol 166, 42-50.[CrossRef] [Google Scholar]
  46. Schweizer, H. P.(1992). Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6, 1195-1204.[CrossRef] [Google Scholar]
  47. Simon, R., Priefer, U. & Pühler, A.(1983). A broad host-range mobilization system for in vitro genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/Technology 1, 784-791.[CrossRef] [Google Scholar]
  48. Smith, M., Jesse, J., Landers, T. & Jordan, J.(1990). High efficiency bacterial electroporation: 1×1010E. coli transformants/μg. Focus 12, 38-40. [Google Scholar]
  49. Sylvestre, M., Mailhiot, K., Ahmad, D. & Masse, R.(1989). Isolation and preliminary characterization of a 2-chlorobenzoate degrading Pseudomonas. Can J Microbiol 35, 439-443.[CrossRef] [Google Scholar]
  50. Tsoi, T. V., Plotnikova, E. G., Cole, J. R., Guerin, W. F., Bagdasarian, M. & Tiedje, J. M.(1999). Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ Microbiol 65, 2151-2162. [Google Scholar]
  51. Unterman, R.(1996). A history of PCB biodegradation. In Bioremediation: Principles and Applications , pp. 209-253. Edited by R. L. Crawford & D. L. Crawford. Cambridge:Cambridge University Press.
  52. Vieira, J. & Messing, J.(1987). Production of single-stranded plasmid DNA. Methods Enzymol 153, 3-11. [Google Scholar]
  53. Zhang, C., Huang, M. & Holloway, B. W.(1993a). Mapping of ben, ant, and cat genes of Pseudomonas aeruginosa and evolutionary relationship of the ben region of P. aeruginosa and P. putida. FEMS Microbiol Lett 108, 303-310.[CrossRef] [Google Scholar]
  54. Zhang, C., Huang, M. & Holloway, B. W.(1993b). Mapping of ben genes of Pseudomonas aeruginosa. FEMS Microbiol Lett 112, 255-259.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error