1887

Abstract

This is the first report on the biosynthesis of a hitherto unknown, sulfur-containing polyester and also the first report on a bacterial polymer containing sulfur in the backbone. The Gram-negative polyhydroxyalkanoate (PHA)-accumulating bacterium synthesized a copolymer of 3-hydroxybutyrate and 3-mercaptopropionate, poly(3HB--3MP), when 3-mercaptopropionic acid or 3,3’-thiodipropionic acid was provided as carbon source in addition to fructose or gluconic acid under nitrogen-limited growth conditions. The peculiarity of this polymer was the occurrence of thioester linkages derived from the thiol groups of 3MP and the carboxyl groups of 3MP or 3HB, respectively, which occurred in addition to the common oxoester bonds of PHAs. Depending on the cultivation conditions and the feeding regime, poly(3HB--3MP) contributed up to 19% of the cellular dry weight, with a molar fraction of 3MP of up to 43%. The chemical structure of poly(3HB--3MP) was confirmed by GC/MS, IR spectroscopy, H- and C-NMR spectroscopy, and elemental sulfur analysis. The identification of this novel biopolymer reveals a new quality regarding the substrate range of PHA synthases and their capability for the synthesis of technically interesting polymers.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-1-11
2001-01-01
2020-07-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/1/1470011a.html?itemId=/content/journal/micro/10.1099/00221287-147-1-11&mimeType=html&fmt=ahah

References

  1. Anderson, A. J. & Dawes, E. A. ( 1990; ). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54, 450-472.
    [Google Scholar]
  2. Bandiera, M., Manaresi, P., Munari, A., Borghini, M. C. & Mastragostino, M. ( 1997; ). Effects of sodium sulfonate groups on the ionic conductivity of a copolyester of thiodipropionic acid. Eur Polym J 33, 1679-1683.[CrossRef]
    [Google Scholar]
  3. Brandl, H., Gross, R. A., Lenz, R. W. & Fuller, R. C. ( 1988; ). Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54, 1977-1982.
    [Google Scholar]
  4. Choi, W., Sanda, F. & Endo, T. ( 1998; ). Novel one-pot syntheses of sulfur-containing polymers from a bifunctional five-membered cyclic dithiocarbonate. J Polym Sci, Part A: Polym Chem 36, 1189-1195.[CrossRef]
    [Google Scholar]
  5. Colthup, N. B., Daly, L. H. & Wiberley, S. E. (1964). Introduction to Infrared and Raman Spectroscopy. New York & London: Academic Press.
  6. Cuebas, D., Beckmann, J. D., Frerman, F. E. & Schulz, H. ( 1985; ). Mitochondrial metabolism of 3-mercaptopropionic acid. J Biol Chem 260, 7330-7336.
    [Google Scholar]
  7. Füchtenbusch, B., Fabritius, D. & Steinbüchel, A. ( 1996; ). Incorporation of 2-methyl-3-hydroxybutyric acid into polyhydroxyalkanoic acids by axenic cultures in defined media. FEMS Microbiol Lett 138, 153-160.[CrossRef]
    [Google Scholar]
  8. Füchtenbusch, B., Fabritius, D., Wältermann, M. & Steinbüchel, A. ( 1998; ). Biosynthesis of novel copolyesters containing 3-hydroxypivalic acid by Rhodococcus ruber NCIMB 40126 and related bacteria. FEMS Microbiol Lett 159, 85-92.[CrossRef]
    [Google Scholar]
  9. Griebel, R., Smith, Z. & Merrick, J. M. ( 1968; ). Metabolism of poly-β-hydroxybutyrate. I. Purification, composition and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7, 3676-3681.[CrossRef]
    [Google Scholar]
  10. Hocking, P. J. & Marchessault, R. H. ( 1994; ). Biopolyesters. In Chemistry and Technology of Biodegradable Polymers , pp. 48-96. Edited by G. J. L. Griffin. London:Chapman & Hall.
  11. Jaeger, K. E., Steinbüchel, A. & Jendrossek, D. ( 1995; ). Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyse poly(ω-hydroxyalkanoates). Appl Environ Microbiol 61, 3113-3118.
    [Google Scholar]
  12. Jendrossek, D., Schirmer, A. & Schlegel, H. G. ( 1996; ). Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46, 451-463.[CrossRef]
    [Google Scholar]
  13. Kameyama, A., Murakami, Y. & Nishikubo, T. ( 1999; ). Novel sequence-ordered polymers by transformation of polymer backbone: quantitative and regioselective insertion of thiiranes into poly(S-aryl thioester). Macromolecules 32, 1407-1412.[CrossRef]
    [Google Scholar]
  14. Kiene, R. P. & Taylor, B. F. ( 1988; ). Biotransformation of organosulphur compounds in sediments via 3-mercaptopropionate. Nature 332, 148-150.[CrossRef]
    [Google Scholar]
  15. Lemoigne, M. ( 1926; ). Produits de deshydration et de polymerisation de l’ácide β-oxybutyrique. Bull Soc Chim Bio 8, 770-782.
    [Google Scholar]
  16. van der Maarel, M. J. E. C. & Hansen, T. A. ( 1997; ). Dimethylsulfoniopropionate in anoxic intertidal sediments: a precursor of methanogenesis via dimethyl sulfide, methanethiol, and methiolpropionate. Mar Geol 137, 5-12.[CrossRef]
    [Google Scholar]
  17. Müh, U., Sinskey, A. J., Kirby, D. P., Lane, W. S. & Stubbe, J. ( 1999; ). PHA synthase from Chromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochemistry 38, 826-837.[CrossRef]
    [Google Scholar]
  18. Müller, H. M. & Seebach, D. ( 1993; ). Poly(hydroxyfettsäureester), eine fünfte Klasse von physiologisch bedeutsamen organischen Biopolymeren? Angew Chem 105, 483-509.[CrossRef]
    [Google Scholar]
  19. Nakamura, S., Kunioka, M. & Doi, Y. ( 1991; ). Biosynthesis and characterization of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate). Macromol Rep A28, 15-24.
    [Google Scholar]
  20. Pedrós-Alio, C., Mas, J. & Guerrero, R. ( 1985; ). The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143, 178-184.[CrossRef]
    [Google Scholar]
  21. Podkoscielny, W. & Podgorski, M. ( 1996; ). Linear polythioesters. 26. Products of interfacial polycondensation of bis(4-mercaptomethylphenyl)methane with some aliphatic and isomeric phthaloyl dichlorides. Angew Makromol Chem 241, 135-148.[CrossRef]
    [Google Scholar]
  22. Rehm, B. H. A. & Steinbüchel, A. ( 1999; ). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25, 3-19.[CrossRef]
    [Google Scholar]
  23. Sabbagh, E., Cuebas, D. & Schulz, H. ( 1985; ). 3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria. J Biol Chem 260, 7337-7342.
    [Google Scholar]
  24. Satho, H., Mino, T. & Matsuo, T. ( 1992; ). Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbonhydrates under anaerobic conditions in the biological excess phosphate removal process. Water Sci Technol 26, 933-942.
    [Google Scholar]
  25. Schlegel, H. G., Kaltwasser, H. & Gottschalk, G. ( 1961; ). Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38, 209-222.[CrossRef]
    [Google Scholar]
  26. Shimamura, E., Scandola, M. & Doi, Y. ( 1994; ). Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxypropionate). Macromolecules 27, 4429-4435.[CrossRef]
    [Google Scholar]
  27. Steinbüchel, A. ( 1991; ). Polyhydroxyalkanoic acids. In Biomaterials , pp. 123-213. Edited by D. Byrom. Basingstoke, UK:Macmillan.
  28. Steinbüchel, A. & Valentin, H. E. ( 1995; ). Diversity of microbial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128, 219-228.[CrossRef]
    [Google Scholar]
  29. Takagi, Y., Hashii, M., Maehara, A. & Yamane, T. ( 1999; ). Biosynthesis of polyhydroxyalkanoate with a thiophenoxy side group obtained from Pseudomonas putida. Macromolecules 32, 8315-8318.[CrossRef]
    [Google Scholar]
  30. Wallen, L. L. & Rohwedder, W. K. ( 1974; ). Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol 8, 576-579.[CrossRef]
    [Google Scholar]
  31. Wodzinska, J., Snell, K. D., Rhomberg, A., Sinskey, A. J., Biemann, K. & Stubbe, J. ( 1996; ). Polyhydroxybutyrate synthase: evidence for covalent catalysis. J Am Chem Soc 118, 6319-6320.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-1-11
Loading
/content/journal/micro/10.1099/00221287-147-1-11
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error