1887

Abstract

The operon of consists of two adjacent genes, and , encoding glucose- and glucoside-specific enzymes II, respectively, the sugar permeases of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The expression of the operon is glucose-inducible. Putative RAT (ribonucleic antiterminator) and terminator sequences localized in the promoter region of suggest regulation via antitermination. The gene was cloned and the putative antiterminator protein GlcT was purified. Activity of this protein was demonstrated in and . studies led to the assumption that phosphoenolpyruvate-dependent phosphorylation of residue His105 via the general PTS components enzyme I and HPr facilitates dimerization of GlcT and consequently activation. Because of the high similarity of the two -RAT sequences of and , studies were performed in . These indicated that GlcT of is able to recognize -RAT sequences of and to cause antitermination. The specific interaction between -RAT and GlcT demonstrated by surface plasmon resonance suggests that only the dimer of GlcT binds to the RAT sequence. HPr-dependent phosphorylation of GlcT facilitates dimer formation and may be a control device for the proper function of the general PTS components enzyme I and HPr necessary for glucose uptake and phosphorylation by the corresponding enzyme II.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2333
2000-09-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462333a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2333&mimeType=html&fmt=ahah

References

  1. Amster-Choder O., Wright A.. 1992; Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science257:1395–1398[CrossRef]
    [Google Scholar]
  2. Amster-Choder O., Wright A.. 1997; BglG, the response regulator of the Escherichia coli bgl operon, is phosphorylated on a histidine residue. J Bacteriol179:5621–5624
    [Google Scholar]
  3. Arantes O., Lereclus D.. 1991; Construction of cloning vectors for Bacillus thuringiensis. Gene108:115–119[CrossRef]
    [Google Scholar]
  4. Arnaud M., Vary P., Zagorec M., Klier A., Débarbouillé M., Postma P., Rapoport G.. 1992; Regulation of the sacPA operon of Bacillus subtilis: identification of phospho-transferase system components involved in SacT activity. J Bacteriol174:3161–3170
    [Google Scholar]
  5. Arnaud M., Debarbouille M., Rapoport G., Saier M. H., Reizer J.. 1996; In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of B. subtilis. J Biol Chem271:18966–18972[CrossRef]
    [Google Scholar]
  6. Aymerich S., Steinmetz M.. 1992; Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci USA89:10410–10414[CrossRef]
    [Google Scholar]
  7. Bachem S., Stülke J.. 1998; Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J Bacteriol180:5319–5326
    [Google Scholar]
  8. Boss A., Nussbaum-Shochat A., Amster-Choder O.. 1999; Characterization of the dimerization domain in BglG, an RNA-binding transcriptional antiterminator from Escherichia coli. J Bacteriol181:1755–1766
    [Google Scholar]
  9. Christiansen I., Hengstenberg W.. 1996; Cloning and sequencing of two genes from Staphylococcus carnosus coding for glucose-specific PTS and their expression in Escherichia coli K-12. Mol Gen Genet250:375–379
    [Google Scholar]
  10. Christiansen I., Hengstenberg W.. 1999; Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system – two highly similar glucose permeases in Staphylococcus carnosus with different glucoside specificity: protein engineering in vivo?. Microbiology145:2881–2889
    [Google Scholar]
  11. Faires N., Tobisch S., Bachem S., Martin-Verstraete I., Hecker M., Stülke J.. 1999; The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J Mol Microbiol Biotechnol1:141–148
    [Google Scholar]
  12. Greenblatt J., Nodwell J. R., Mason S. W.. 1993; Transcriptional antitermination. Nature364:401–406[CrossRef]
    [Google Scholar]
  13. Hjerten S., Jerstedt S., Tiselius A.. 1965; Some aspects of the use of ‘continuous’ and ‘discontinuous’ buffer systems in polyacrylamide gel electrophoresis. Anal Biochem11:219–223[CrossRef]
    [Google Scholar]
  14. Kravanja M., Engelmann R., Dossonnet V..7 other authors 1999; The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol31:59–66[CrossRef]
    [Google Scholar]
  15. Kristensen T., Voss H., Schwager C., Stegemann J., Sproat B., Ansorge W.. 1988; T7 DNA polymerase in automated dideoxy sequencing. Nucleic Acids Res16:3487–3496[CrossRef]
    [Google Scholar]
  16. Krüger S., Hecker M.. 1995; Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J Bacteriol177:5590–5597
    [Google Scholar]
  17. Kunst F., Rapoport G.. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol177:2403–2407
    [Google Scholar]
  18. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  19. Langbein I., Bachem S., Stülke J.. 1999; Specific interaction of the RNA-binding domain of B. subtilis transcriptional antiterminator GlcT with its RNA target, RAT. J Mol Biol293:795–805[CrossRef]
    [Google Scholar]
  20. Landick R., Yanofsky C., Choo K., Phung L.. 1990; Replacement of the Escherichia coli trp operon attenuation control codons alters operon expression. J Mol Biol216:25–37[CrossRef]
    [Google Scholar]
  21. Lindner C., Galinier A., Hecker M., Deutscher J.. 1999; Regulation of the activity of the Bacillus subtilis anti-terminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol Microbiol31:995–1006[CrossRef]
    [Google Scholar]
  22. Manival X., Yang Y., Strub M. P., Kochoyan M., Steinmetz M., Aymerich S.. 1997; From genetic to structural characterization of a new class of RNA-binding domain within the SacY/BglG family of antiterminator proteins. EMBO J16:5019–5029[CrossRef]
    [Google Scholar]
  23. Meijberg W., Schuurman-Wolters G.-K., Boer H., Scheek R. M., Robillard G. T.. 1998; The thermal stability and domain interactions of the mannitol permease of Escherichia coli. A differential scanning calorimetry study. J Biol Chem273:20785–20794[CrossRef]
    [Google Scholar]
  24. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Pas H. H., ten Hoeve-Duurkens R. H., Robillard G. T.. 1988; Bacterial phosphoenol-pyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer. Biochemistry27:5520–5525[CrossRef]
    [Google Scholar]
  26. Rutberg B.. 1997; Antitermination of transcription of catabolic operons. Mol Microbiol23:413–421[CrossRef]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schnetz K., Rak B.. 1988; Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J7:3271–3277
    [Google Scholar]
  29. Schnetz K., Rak B.. 1990; Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control. Proc Natl Acad Sci USA87:5074–5078[CrossRef]
    [Google Scholar]
  30. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G.. 1997; Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol25:65–78[CrossRef]
    [Google Scholar]
  31. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I.. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol28:865–874[CrossRef]
    [Google Scholar]
  32. Tabor S., Richardson C. C.. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA82:1074–1078[CrossRef]
    [Google Scholar]
  33. van Tilbeurgh H., Manival X., Aymerich S., Lhoste J.-M., Dumas C., Kochoyan M.. 1997; Crystal structure of a new RNA-binding domain from the antiterminator protein SacY of Bacillus subtilis. EMBO J16:5030–5036[CrossRef]
    [Google Scholar]
  34. Tortosa P., Aymerich S., Lindner C., Saier M. H., Reizer J., Le Coq D.. 1997; Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system. J Biol Chem272:17230–17237[CrossRef]
    [Google Scholar]
  35. Yanofsky C., Paluh J. L., van Cleemput M., Horn V.. 1987; Fusion of trpB and trpA of Escherichia coli yields a partially active tryptophan synthetase polypeptide. J Biol Chem262:11584–11590
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2333
Loading
/content/journal/micro/10.1099/00221287-146-9-2333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error