A deeply branched novel phylotype found in Japanese paddy soils

The GenBank/EMBL/DDBJ accession numbers for the sequences of the novel soil clones and their aligned data set are D88480–D88489 and ds36901, respectively.

Free

Abstract

Novel 16S rDNA clones which possibly constitute a sister clade from the two known archaeal lineages, and , were found in paddy soil environments. Overall signature sequences showed that the clone sequences shared a majority of signature sequence features with the and . However, there were at least nine nucleotides which distinguished the novel clones from the domains and . Phylogenetic trees, drawn by maximum-parsimony, neighbour-joining and maximum-likelihood methods, also supported the unique phylogenetic position of the clones. Both signature sequence and phylogenetic analyses strongly suggest that the novel organisms constitute a new group and their phylogenetic positions are distant from the and . A specific primer set was designed to detect the presence of the novel group of organisms in terrestrial environments. Specific DNA fragments were amplified from all paddy soil DNAs, suggesting that the novel organisms are widely distributed in rice paddy fields in Japan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2309
2000-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462309a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2309&mimeType=html&fmt=ahah

References

  1. Adachi J., Hasegawa M. 1995; Improved dating of the human-chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino acid sites. J Mol Evol 40:622–628 [CrossRef]
    [Google Scholar]
  2. Adachi J., Hasegawa M. 1996 Computer science monographs, no. 28, molphy: version 2.3. Programs for molecular phylogenetics based on maximum likelihood Institute of Statistical Mathematics; Tokyo:
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613 [CrossRef]
    [Google Scholar]
  5. Barns S. M., Delwiche C. F., Palmer J. D., Pace N. R. 1996; Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193 [CrossRef]
    [Google Scholar]
  6. Bintrim S. B., Donohue T. J., Handelsman J., Roberts G. P., Goodman R. M. 1997; Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci USA 94:277–282 [CrossRef]
    [Google Scholar]
  7. Chin K.-J., Lukow T., Conrad R. 1999; Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol 65:2341–2349
    [Google Scholar]
  8. Dalgaard J. Z., Garrett R. A. 1993; Archaeal hyperthermophilic genes. In The Biochemistry of Archaea (Archaebacteria) pp. 535–563Edited by Kates M., Kushner D. J., Matheson A. T. Amsterdam: Elsevier;
    [Google Scholar]
  9. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689 [CrossRef]
    [Google Scholar]
  10. DeLong E. F. 1998; Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1995 phylip (Phylogeny Inference Package) version 3.57c Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  12. ``` J. A., McCallum K., Davis A. A. 1992; Novel major archaebacterial group from marine plankton. Nature 356:148–149 [CrossRef]
    [Google Scholar]
  13. Großkopf R., Stubner S., Liesack W. 1998; Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989
    [Google Scholar]
  14. Hasegawa M., Kishino H. 1994; Accuracies of the simple methods for estimating the bootstrap probability of a maximum likelihood tree. Mol Biol Evol 11:142–145
    [Google Scholar]
  15. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  17. Kishino H., Miyata T., Hasegawa M. 1990; Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J Mol Evol 31:151–160 [CrossRef]
    [Google Scholar]
  18. Kudo Y., Nakajima T., Miyaki T., Oyaizu H. 1996; Methanogen flora of paddy soils in Japan. FEMS Microbiol Ecol 22:39–48
    [Google Scholar]
  19. Kudo Y., Shibata S., Miyaki T., Aono T., Oyaizu H. 1997; Peculiar archaea found in Japanese paddy soils. Biosci Biotechnol Biochem 61:917–920 [CrossRef]
    [Google Scholar]
  20. Lake J. A. 1991; Tracing origins with molecular sequences: metazoan and eukaryotic beginnings. Trends Biochem Sci 16:46–49 [CrossRef]
    [Google Scholar]
  21. McInerney J. O., Wilkinson M., Patching J. W., Embley T. M., Powell R. 1995; Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl Environ Microbiol 61:1646–1648
    [Google Scholar]
  22. Maidak B. L., Cole J. R., Parker C. T. Jr11 other authors 1999; A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  23. Mathews D. H., Burkard M. E. 1997 RNAstructure version 2.51 Distributed by the author Department of Chemistry, University of Rochester; Rochester, NY, USA:
    [Google Scholar]
  24. Neefs J.-M., de Peer Y. V., Rijk P. D., Chapelle S., DeWachter R. 1993; Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21:3025–3049 [CrossRef]
    [Google Scholar]
  25. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) changes: breathing new life into microbiology. J Bacteriol 176:1–6
    [Google Scholar]
  26. Schleper C., Holben B., Klenk H.-P. 1997; Recovery of crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments. Appl Environ Microbiol 63:321–323
    [Google Scholar]
  27. Swofford D. L. 1991 paup: phylogenetic analysis using parsimony. Version 3.1 Illinois Natural History Survey Champaign; Illinois, USA:
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Ward D. M., Weller R., Shiea J., Castenholz R. W., Cohen Y. 1990; 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65 [CrossRef]
    [Google Scholar]
  30. Ward D. M., Bateson M. M., Weller R., Ruff-Roberts A. L. 1992; Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microb Ecol 12:219–286
    [Google Scholar]
  31. Weller R., Ward D. M. 1991; 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl Environ Microbiol 57:1146–1151
    [Google Scholar]
  32. Wheelis M. L., Kandler O., Woese C. R. 1992; On the nature of global classification. Proc Natl Acad Sci USA 89:2930–2934 [CrossRef]
    [Google Scholar]
  33. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 5:221–271
    [Google Scholar]
  34. Woese C. R., Kandler O., Wheelis M. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579 [CrossRef]
    [Google Scholar]
  35. Woese C. R., Achenbach L., Rouviere P., Mandelco L. 1991; Archaeal phylogeny: re-examination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14:364–371 [CrossRef]
    [Google Scholar]
  36. Zuker M. 1989; On finding all suboptimal foldings of a RNA molecule. Science 244:48–52 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2309
Loading
/content/journal/micro/10.1099/00221287-146-9-2309
Loading

Data & Media loading...

Most cited Most Cited RSS feed