1887

Abstract

Campylobacters have two similar copies ( and ) of their flagellin gene. It has been hypothesized that the two copies can serve for antigenic phase variation. Analysis of polymorphisms within aligned multiple DNA sequences of the flagellin genes revealed high pairwise homoplasy indexes between / pairs that were not observed between any / pairings or / pairings. Thus it seems there are constraints on the sequence of that distinguish it from . Nevertheless, segments of the two genes that are highly variable between strains are conserved between the and copies of the genes within a strain. The patterns of synonymous and non-synonymous differences suggest that one segment of the flagellin sequence is under selective pressure at the amino acid sequence level. Another segment of the protein is maintained within a strain by conversion or recombination. Comparisons of strict consensus amino acid sequences did not reveal any motifs that are uniquely FlaA or FlaB, but there are differences between FlaA and FlaB in those amino acids available for post-translational modification. The observed pattern of concerted evolution of portions of a structural gene is an unusual finding in bacteria and should be searched for with other duplicated genes. Concerted evolution was unexpected for genes involved in phase variation since it minimizes the antigenic repertoire that can be expressed by a single clone in the face of the host immune response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2283
2000-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462283a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2283&mimeType=html&fmt=ahah

References

  1. Abdulkarim, F. & Hughes, D. ( 1996; ). Homologous recombination between the tuf genes of Salmonella typhimurium. J Mol Biol 260, 506-522.[CrossRef]
    [Google Scholar]
  2. Aeschbacher, M. & Piffaretti, J. C. ( 1989; ). Population genetics of human and animal enteric Campylobacter isolates. Infect Immun 57, 1432-1437.
    [Google Scholar]
  3. Alm, R. A., Guerry, P. & Trust, T. J. ( 1993; ). Significance of duplicated flagellin genes in Campylobacter. J Mol Biol 230, 359-363.[CrossRef]
    [Google Scholar]
  4. Dayhoff, M., Schwartz, R. M. & Orcutt, B. C. (1978). Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, p. 345. Silver Spring, MD: National Biomedical Research Foundation.
  5. Doig, P., Kinsella, N., Guerry, P. & Trust, T. J. ( 1996; ). Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol 19, 379-387.[CrossRef]
    [Google Scholar]
  6. Endo, T., Ikeo, K. & Gojobori, T. ( 1996; ). Large-scale search for genes on which positive selection may operate. Mol Biol Evol 13, 685-690.[CrossRef]
    [Google Scholar]
  7. Guerry, P., Logan, S. M., Thornton, S. & Trust, T. J. ( 1990; ). Genomic organization and expression of Campylobacter flagellin genes. J Bacteriol 172, 1853-1860.
    [Google Scholar]
  8. Harrington, C. S., Thomson-Carter, F. M. & Carter, P. E. ( 1997; ). Evidence for recombination in the flagellin locus of Campylobacter jejuni: implications for the flagellin gene typing scheme. J Clin Microbiol 35, 2386-2392.
    [Google Scholar]
  9. Jakupciak, J. P. & Wells, R. D. ( 1999; ). Genetic instabilities in (CTG.CAG) repeats occur by recombination. J Biol Chem 274, 23468-23479.[CrossRef]
    [Google Scholar]
  10. Jensen, R. A. & Gu, W. ( 1996; ). Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases. J Bacteriol 178, 2161-2171.
    [Google Scholar]
  11. Khawaja, R., Neote, K., Bingham, H. L., Penner, J. L. & Chan, V. L. ( 1992; ). Cloning and sequence analysis of the flagellin gene of Campylobacter jejuni TGH9011. Curr Microbiol 24, 213-221.[CrossRef]
    [Google Scholar]
  12. Kowalchuk, G. A., Gregg-Jolly, L. A. & Ornston, L. N. ( 1995; ). Nucleotide sequences transferred by gene conversion in the bacterium Acinetobacter calcoaceticus. Gene 153, 111-115.[CrossRef]
    [Google Scholar]
  13. Li, W.-H. ( 1993; ). Unbiased estimation of the rates of synonymous and nonsynonymous substitutions. J Mol Evol 36, 96-99.[CrossRef]
    [Google Scholar]
  14. Li, W.-H. (1997). Molecular Evolution. Sunderland, MA: Sinauer Associates.
  15. Logan, S. M., Trust, T. J. & Guerry, P. ( 1989; ). Evidence for posttranslational modification and gene duplication of Campylobacter flagellin. J Bacteriol 169, 3031-3038.
    [Google Scholar]
  16. Madoff, L. C., Michel, J. L., Gong, E. W., Kling, D. E. & Kasper, D. L. ( 1996; ). Group B streptococci escape host immunity by deletion of tandem repeat elements of the alpha C protein. Proc Natl Acad Sci USA 93, 4131-4136.[CrossRef]
    [Google Scholar]
  17. Mattatall, N. R., Daines, D. A., Liu, S.-L. & Sanderson, K. E. ( 1996; ). Salmonella typhi contains identical intervening sequences in all seven rrl genes. J Bacteriol 178, 5323-5326.
    [Google Scholar]
  18. Meinersmann, R. J., Helsel, L. O., Fields, P. I. & Hiett, K. L. ( 1997; ). Discrimination of Campylobacter jejuni by fla gene sequencing. J Clin Microbiol 35, 2810-2814.
    [Google Scholar]
  19. Nachamkin, I., Yang, X. H. & Stern, N. J. ( 1993; ). Role of Campylobacter jejuni flagella as colonization factors for three day old chicks: analysis with flagellar mutants. Appl Environ Microbiol 59, 1269-1273.
    [Google Scholar]
  20. Nuijten, P. J., van Asten, F. J., Gaastra, W. & van der Zeijst, B. A. ( 1990; ). Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 265, 17798-17804.
    [Google Scholar]
  21. Okazaki, N., Matsuo, S., Saito, K., Tominaga, A. & Enomoto, M. ( 1993; ). Conversion of the Salmonella phase 1 flagellin gene fliC to the phase 2 fljB on the Escherichia coli K-12 chromosome. J Bacteriol 175, 758-766.
    [Google Scholar]
  22. Reeves, P. R., Farnell, L. & Lan, R. ( 1994; ). multicomp: a program for preparing sequence data for phylogenetic analysis. Comput Appl Biosci 10, 281-284.
    [Google Scholar]
  23. Sawyer, S. A. ( 1989; ). Statistical tests for detecting gene conversion. Mol Biol Evol 6, 526-538.
    [Google Scholar]
  24. Stewart, C. B. ( 1993; ). The powers and pitfalls of parsimony. Nature 361, 603-607.[CrossRef]
    [Google Scholar]
  25. Swofford, D. L. (1999). paup*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA, Sinauer Associates.
  26. Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. ( 1996; ). Phylogenetic inference. In Molecular Systematics , pp. 407-514. Edited by D. M. Hillis, C. Moritz & B. K. Mable. Sunderland, MA: Sinauer Associates.
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef]
    [Google Scholar]
  28. Wang, Y. & Taylor, D. E. ( 1990; ). Natural transformation in Campylobacter species. J Bacteriol 172, 949-955.
    [Google Scholar]
  29. Wassenaar, T. M., Bleumink-Pluym, N. M. C. & van der Zeijst, B. A. M. ( 1991; ). Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10, 2055-2061.
    [Google Scholar]
  30. Wassenaar, T. M., van der Zeijst, B. A., Ayling, R. & Newell, D. G. ( 1993; ). Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 139, 1171-1175.[CrossRef]
    [Google Scholar]
  31. West, S. C. ( 1992; ). Enzymes and molecular mechanisms of genetic recombination. Annu Rev Biochem 61, 603-640.[CrossRef]
    [Google Scholar]
  32. Yamashita, I., Vonderviszt, F., Mimori, Y., Suzuki, H., Oosawa, K. & Namba, K. ( 1995; ). Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding. J Mol Biol 253, 547-558.[CrossRef]
    [Google Scholar]
  33. Zhang, Q. Y., DeRyckere, D., Lauer, P. & Koomey, M. ( 1992; ). Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation. Proc Natl Acad Sci USA 89, 5366-5370.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2283
Loading
/content/journal/micro/10.1099/00221287-146-9-2283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error