1887

Abstract

was adapted to grow in medium containing substantially elevated concentrations of either Zn(II), Cd(II), Co(II) or Ni(II). Whole-genome transcriptional profiles were generated from adapted strains and analysed for significant alteration in transcript abundance with reference to a wild-type strain. Similar alterations in specific message levels were observed for strains adapted to the four metal ions. One unexpected trend was the increase in transcript level of genes involved in transposition of IS elements, particularly . Subsequent expression of from a heterologous promoter in conferred tolerance to Zn(II).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2277
2000-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462277a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2277&mimeType=html&fmt=ahah

References

  1. Bearden S. W., Staggs T. M., Perry R. D. 1998; An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol 180:1135–1147
    [Google Scholar]
  2. Blattner F. R., Plunkett G. III, Bloch C. A.14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  3. Blot M., Heitman J., Arber W. 1993; Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Mol Microbiol 8:1017–1024 [CrossRef]
    [Google Scholar]
  4. Bull P. C., Cox D. W. 1994; Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet 10:246–252 [CrossRef]
    [Google Scholar]
  5. Bylund G. O., Persson B. C., Lundberg L. A. C., Wikstrom P. M. 1997; A novel ribosome-associated protein is important for efficient translation in Escherichia coli. J Bacteriol 179:4567–4574
    [Google Scholar]
  6. Deeley M. C., Yanofsky C. 1981; Nucleotide-sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol 147:787–796
    [Google Scholar]
  7. Giller K. E., Witter E., McGrath S. P. 1998; Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414 [CrossRef]
    [Google Scholar]
  8. Guest J. R., Roberts R. E., Wilde R. J. 1984; Cloning of the aspartase gene (aspA) of Escherichia coli. J Gen Microbiol 130:1271–1278
    [Google Scholar]
  9. Gupta A., Whitton B. A., Morby A. P., Huckle J. W., Robinson N. J. 1992; Amplification and rearrangement of a prokaryotic metallothionein locus smt in Synechococcus PCC-6301 selected for tolerance to cadmium. Proc R Soc Lond Ser B Biol Sci 248:273–281 [CrossRef]
    [Google Scholar]
  10. Gupta A., Morby A. P., Turner J. S., Whitton B. A., Robinson N. J. 1993; Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC-6301 involving a highly iterated palindrome (hip1). Mol Microbiol 7:189–195 [CrossRef]
    [Google Scholar]
  11. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose P-Bad promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  12. Jones H. A., Lillard J. W., Perry R. D. 1999; HmsT, a protein essential for the expression of the haemin storage (hms +) system of Yersinia pestis. Microbiology 145:2117–2128 [CrossRef]
    [Google Scholar]
  13. Kelly J. J., Haggblom M., Tate R. L. 1999; Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1456 [CrossRef]
    [Google Scholar]
  14. Kille P., Hemmings A., Lunney E. A. 1994; Memories of metallothionein. Biochim Biophys Acta 1205:151–161 [CrossRef]
    [Google Scholar]
  15. Machida C., Machida Y. 1989; Regulation of IS1 transposition by the insA gene-product. J Mol Biol 208:567–574 [CrossRef]
    [Google Scholar]
  16. Matsutani S. 1997; Genetic analyses of the interactions of the IS1-encoded proteins with the left end of IS1 and its insertion hotspot. J Mol Biol 267:548–560 [CrossRef]
    [Google Scholar]
  17. Naas T., Blot M., Fitch W. M., Arber W. 1994; Insertion sequence-related genetic-variation in resting Escherichia coli K-12. Genetics 136:721–730
    [Google Scholar]
  18. Navarro C., Wu L. F., Mandrand-Berthelot M. A. 1993; The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol 9:1181–1191 [CrossRef]
    [Google Scholar]
  19. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750 [CrossRef]
    [Google Scholar]
  20. Nies D. H., Nies A., Chu L., Silver S. 1989; Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355 [CrossRef]
    [Google Scholar]
  21. Pierson D. E., Campbell A. 1990; Cloning and nucleotide sequence of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli. J Bacteriol 172:2194–2198
    [Google Scholar]
  22. Ried G., Hindennach I., Henning U. 1990; Role of lipopolysaccharide in assembly of Escherichia coli outer membrane proteins OmpA, OmpC, and OmpF. J Bacteriol 172:6048–6053
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Weijland A., Harmark K., Cool R. H., Anborgh P. H., Parmeggiani A. 1992; Elongation factor TU: a molecular switch in protein biosynthesis. Mol Microbiol 6:683–688 [CrossRef]
    [Google Scholar]
  25. Wrzesinski J., Bakin A., Nurse K., Lane B. G., Ofengand J. 1995; Purification, cloning, and properties of the 16S RNA pseudouridine 516 synthase from Escherichia coli. Biochemistry 34:8904–8913 [CrossRef]
    [Google Scholar]
  26. Xu C., Zhou T. Q., Kuroda M., Rosen B. P. 1998; Metalloid resistance mechanisms in prokaryotes. J Biochem 123:16–23 [CrossRef]
    [Google Scholar]
  27. Zerbib D., Jakowec M., Prentki P., Galas D. J., Chandler M. 1987; Expression of proteins essential for IS1 transposition-specific binding of insA to the ends of IS1. EMBO J 6:3163–3169
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2277
Loading
/content/journal/micro/10.1099/00221287-146-9-2277
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error