1887

Abstract

Fructose-negative mutants of wild-type strain GII-3 were selected by two methods. The first method is based on the selection of spontaneous xylitol-resistant mutants, xylitol being a toxic fructose analogue. Five such mutants were obtained, but only one, xyl3, was unable to use fructose and had no phosphoenolpuryvate:fructose phosphotransferase system (fructose-PTS) activity. Amplification and sequencing of the fructose permease gene of mutant xyl3 revealed the presence of an adenylic insertion leading to a truncated permease. The second method is based on inactivation of and/or by homologous recombination involving one crossing-over between the chromosomal genes and inactivated genes carried by replicative plasmids. Fructose-negative mutants were obtained at a frequency of about 10%. Fructose-PTS activity and 1-phosphofructokinase activity were not detected in four representative mutants that were characterized (H31, H45, E38 and E53). In strain H31, Southern blot analysis and PCR showed that the result of homologous recombination was, as expected, the presence in the chromosome of two mutated copies with the plasmid sequence in between. Only the mutated copy, under control of the fructose operon promoter, was transcribed. This work describes for the first time the use of two methods to obtain fructose-auxotrophic mutants of . The method involving homologous recombination is a general procedure for gene disruption in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2229
2000-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462229a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2229&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  2. Briggs C. E., Khandekar S. S., Jacobson G. R. 1992; Structure/function relationships in the Escherichia coli mannitol permease: identification of regions important for membrane insertion, substrate binding and oligomerization. Res Microbiol 143:139–149 [CrossRef]
    [Google Scholar]
  3. Calavan E. C., Bové J. M. 1989; Ecology of Spiroplasma citri. In The Mycoplasmas pp. 425–485Edited by Whitcomb R. F., Tully J. G. New York: Academic Press;
    [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299 [CrossRef]
    [Google Scholar]
  5. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890 [CrossRef]
    [Google Scholar]
  6. Corpet F., Gouzy J., Kahn D. 1999; Recent improvements of the ProDom database of protein domain families. Nucleic Acids Res 27:263–267 [CrossRef]
    [Google Scholar]
  7. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  8. Ferenci T., Kornberg H. L. 1973; The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochem J 132:341–347
    [Google Scholar]
  9. Foissac X., Danet J. L., Saillard C., Gaurivaud P., Laigret F., Bové J. M. 1997a; Mutagenesis by insertion of Tn4001 into the genome of Spiroplasma citri: characterization of mutants affected in plant pathogenicity and transmission to the plant by leafhopper vector Circulifer haemoatoceps. Mol Plant–Microbe Interact 10:454–461 [CrossRef]
    [Google Scholar]
  10. Foissac X., Saillard C., Bové J. M. 1997b; Random insertion of transposon Tn4001 in the genome of Spiroplasma citri strain GII3. Plasmid 37:80–86 [CrossRef]
    [Google Scholar]
  11. Gaurivaud P., Laigret F., Garnier M., Bové J. M. 2000; Characterization of the fructose operon of Spiroplasma citri. Gene (in press)
    [Google Scholar]
  12. Gay P., Rapoport G. 1970; Etude des mutants dépourvus de fructose-1-phosphate kinase chez Bacillus subtilis. C R Acad Sci Ser D 271:374–377
    [Google Scholar]
  13. Hausman S. Z., Thompson J., London J. 1984; Futile xylitol cycle in Lactobacillus casei. J Bacteriol 160:211–215
    [Google Scholar]
  14. Labarère J., Barroso G. 1989; Lethal and mutation frequency responses of Spiroplasma citri cells to UV irradiation. Mutat Res 210:135–141 [CrossRef]
    [Google Scholar]
  15. London J., Hausman S. 1982; Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei. J Bacteriol 150:657–661
    [Google Scholar]
  16. Marais A., Bové J. M., Renaudin J. 1996; Characterization of the recA gene regions of Spiroplasma citri and Spiroplasma melliferum. J Bacteriol 178:7003–7009
    [Google Scholar]
  17. Navas-Castillo J., Laigret F., Hocquellet A., Chang C. J., Bové J. M. 1993; Evidence for a phosphoenolpyruvate dependent sugar-phosphotransferase system in the mollicute Acholeplasma florum. Biochimie 75:675–679 [CrossRef]
    [Google Scholar]
  18. Pollack J. D. 1995; Methods for testing metabolic activities in mollicutes. In Molecular and Diagnostic Procedures in Mycoplasmology pp. 277–286Edited by Razin S., Tully J. G. New York: Academic Press;
    [Google Scholar]
  19. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  20. Reiner A. M. 1977; Xylitol and d-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J Bacteriol 132:166–173
    [Google Scholar]
  21. Reizer J., Ramseier T. M., Reizer A., Charbit A., Saier M. H. Jr 1996; Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142:231–250 [CrossRef]
    [Google Scholar]
  22. Renaudin J., Marais A., Verdin E., Duret S., Foissac X., Laigret F., Bové J. M. 1995; Integrative and free Spiroplasma citri oriC plasmids: expression of the Spiroplasma phoeniceum spiralin in Spiroplasma citri. J Bacteriol 177:2870–2877
    [Google Scholar]
  23. Saglio P., Lhospital M., Lafleche D., Dupont G., Bové J. M., Tully J. G., Freundt E. A. 1973; Spiroplasma citri gen. and sp. nov.: a mycoplasma like organism associated with ‘‘stubborn’’ disease of citrus. Int J Syst Bacteriol 23:191–204 [CrossRef]
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. E. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sonnhammer E. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. In Sixth Conference on Intelligent Systems for Molecular Biology pp. 175–182Edited by Glasgow J. AAAI Press;
    [Google Scholar]
  26. Stamburski C., Renaudin J., Bové J. M. 1991; First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon: synthesis of chloramphenicol acetyltransferase in Spiroplasma citri. J Bacteriol 173:2225–2230
    [Google Scholar]
  27. Trahan L., Bareil M., Gauthier L., Vadeboncoeur C. 1985; Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Caries Res 19:53–63 [CrossRef]
    [Google Scholar]
  28. Trahan L., Neron S., Bareil M. 1991; Intracellular xylitol-phosphate hydrolysis and efflux of xylitol in Streptococcus sobrinus. Oral Microbiol Immunol 6:41–50 [CrossRef]
    [Google Scholar]
  29. Tully J. G. 1983; Cloning and filtration techniques for mycoplasmas. In Methods in Mycoplasmology pp. 173–177Edited by Razin S., Tully J. G. New York: Academic Press;
    [Google Scholar]
  30. Tully J. G., Whitcomb R. F., Clark H. F., Williamson D. L. 1977; Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195:892–894 [CrossRef]
    [Google Scholar]
  31. Vignault J. C., Bov é J. M., Saillard C.17 other authors 1980; Mise en culture de spiroplasmes à partir de matériel végétal et d’insectes provenant des pays circum-mediterranéans et du proche-orient. C R Acad Sci Ser D 290:775–778
    [Google Scholar]
  32. Whitcomb R. F. 1983; Culture media for spiroplasma. In Methods in Mycoplasmology pp. 147–158Edited by Razin S., Tully J. G. New York: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2229
Loading
/content/journal/micro/10.1099/00221287-146-9-2229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error