1887

Abstract

A bank of 600 insertional mutants of was screened for mutants defective in stationary-phase survival. Of 74 mutants picked by the initial screen, 21 had stationary-phase survival defects and 7 of these were studied in more detail. In general, mutants survived stationary phase significantly less well in rich medium than under carbon-starvation conditions. In all cases the loss of viability in stationary phase was not complete even after prolonged incubation. All mutants showed an initial decrease in viability, during the first 40 d in stationary phase, followed by an increase in viable counts that returned viability close to the levels of the wild-type. Southern hybridization experiments showed that recovery of viability was not a consequence of precise excision or movement of the transposon. Two of the survival mutants differed from the wild-type in their colony morphology, and recovery of their viability in stationary phase was coincident with the return of wild-type colony morphology. It is possible that second-site suppressor mutations accumulate that alleviate the effects of the original mutation. For five of the mutants the DNA flanking the site of transposition was amplified by ligation-mediated PCR and sequenced to identify the disrupted locus. In each case, homologous genes were identified in the genome, three of which have clearly predicted functions in as a penicillin-binding protein, in biotin biosynthesis and as a polyketide synthase. This is the first identification of genes implicated in the stationary-phase survival of mycobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2209
2000-09-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462209a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2209&mimeType=html&fmt=ahah

References

  1. Azad A. K., Sirakova T. D., Rogers L. M., Kolattukudy P. E. 1996; Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci USA 93:4787–4792 [CrossRef]
    [Google Scholar]
  2. Ballesteros M., Kusano S., Ishihama A., Vicente M. 1998; The ftsQ1p gearbox promoter of Escherichia coli is a major sigma S-dependent promoter in the ddlB–ftsA region. Mol Microbiol 30:419–430 [CrossRef]
    [Google Scholar]
  3. Barer M. R. 1997; Viable but non-culturable and dormant bacteria: time to resolve an oxymoron and a misnomer?. J Med Microbiol 46:629–631
    [Google Scholar]
  4. Beggs M. L., Cave M. D., Eisenach K. D. 1996; Isolation and sequence of a Mycobacterium tuberculosis sigma factor. Gene 174:285–287 [CrossRef]
    [Google Scholar]
  5. Bohannon D. E., Connell N., Keener J., Tormo A., Espinosaurgel M., Zambrano M. M., Kolter R. 1991; Stationary-phase-inducible gearbox promoters – differential effects of katF mutations and role of sigma-70. J Bacteriol 173:4482–4492
    [Google Scholar]
  6. Buchanan C. E., Sowell M. O. 1982; Synthesis of penicillin-binding protein-6 by stationary-phase Escherichia coli. J Bacteriol 151:491–494
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–560 [CrossRef]
    [Google Scholar]
  8. Demaio J., Zhang Y., Ko C., Young D. B., Bishai W. R. 1996; A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 93:2790–2794 [CrossRef]
    [Google Scholar]
  9. Demaio J., Zhang Y., Ko C., Bishai W. 1997; Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tubercle Lung Dis 78:3–12 [CrossRef]
    [Google Scholar]
  10. Dougherty T. J., Pucci M. J. 1994; Penicillin-binding proteins are regulated by RpoS during transitions in growth states of Escherichia coli. Antimicrob Agents Chemother 38:205–210 [CrossRef]
    [Google Scholar]
  11. Doukhan L., Predich M., Nair G., Dussurget O., Mandicmulec I., Cole S. T., Smith I. 1995; Genomic organization of the mycobacterial sigma-gene-cluster. Gene 165:67–70 [CrossRef]
    [Google Scholar]
  12. Errington J. 1993; Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33
    [Google Scholar]
  13. Glauner B., Höltje J. V. 1990; Growth-pattern of the murein sacculus of Escherichia coli. J Biol Chem 265:18988–18996
    [Google Scholar]
  14. Groat R. G., Schultz J. E., Zychlinsky E., Bockman A., Matin A. 1986; Starvation proteins in Escherichia coli – kinetics of synthesis and role in starvation survival. J Bacteriol 168:486–493
    [Google Scholar]
  15. Guilhot C., Otal I., Vanrompaey I., Martin C., Gicquel B. 1994; Efficient transposition in mycobacteria – construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176:535–539
    [Google Scholar]
  16. Hartmans S., De Bont J. A. M. 1992; The genus Mycobacterium – nonmedical. In The Prokaryotes, 2nd edn. vol. II pp. 1215–1237Edited by Balows A.others New York: Springer;
    [Google Scholar]
  17. Hengge-Aronis R. 1993; The role of rpoS in early stationary phase gene regulation in Escherichia coli K12. In Starvation in Bacteria pp. 171–200Edited by Kjelleberg S. New York: Plenum;
    [Google Scholar]
  18. Hu Y. M., Coates A. R. M. 1999a; Transcription of two sigma 70 homologue genes, SigA and SigB, in stationary-phase Mycobacterium tuberculosis. J Bacteriol 181:469–476
    [Google Scholar]
  19. Hu Y. M., Coates A. R. M. 1999b; Transcription of the stationary-phase-associated hspX gene of Mycobacterium tuberculosis is inversely related to synthesis of the 16-kilodalton protein. J Bacteriol 181:1380–1387
    [Google Scholar]
  20. Hu Y. M., Butcher P. D., Mangan J. A., Rajandream M. A., Coates A. R. M. 1999; Regulation of hmp gene transcription in Mycobacterium tuberculosis: effects of oxygen limitation and nitrosative and oxidative stress. J Bacteriol 181:3486–3493
    [Google Scholar]
  21. Hutter B., Dick T. 1998; Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 167:7–11 [CrossRef]
    [Google Scholar]
  22. Kaprelyants A. S., Kell D. B. 1993; Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196
    [Google Scholar]
  23. Kjelleberg S.editor 1993 Starvation in Bacteria New York: Plenum;
    [Google Scholar]
  24. Kolattukudy P. E., Fernandes N. D., Azad A. K., Fitzmaurice A. M., Sirakova T. D. 1997; Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24:263–270 [CrossRef]
    [Google Scholar]
  25. Kolter R., Siegele D. A., Tormo A. 1993; The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874 [CrossRef]
    [Google Scholar]
  26. Lazar S. W., Almiron M., Tormo A., Kolter R. 1998; Role of the Escherichia coli SurA protein in stationary-phase survival. J Bacteriol 180:5704–5711
    [Google Scholar]
  27. Lee B. H., Murugasu-Oei B., Dick T. 1998; Upregulation of a histone-like protein in dormant Mycobacterium smegmatis. Mol Gen Genet 260:475–479 [CrossRef]
    [Google Scholar]
  28. Martin C., Timm J., Rauzier J., Gomez-Lus R., Davies J., Giquel B. 1990; Transposition of an antibiotic resistance element in mycobacteria. Nature 345:739–743 [CrossRef]
    [Google Scholar]
  29. Michele T. M., Ko C., Bishai W. R. 1999; Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: implications for chemotherapy against mycobacterial persistors. Antimicrob Agents Chemother 43:218–225
    [Google Scholar]
  30. Nystrom T. 1999; Starvation, cessation of growth and bacterial aging. Curr Opin Microbiol 2:214–219 [CrossRef]
    [Google Scholar]
  31. Parrish N. M., Dick J. D., Bishai W. R. 1998; Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol 6:107–112 [CrossRef]
    [Google Scholar]
  32. Predich M., Doukhan L., Nair G., Smith I. 1995; Characterization of RNA-polymerase and 2 sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol 15:355–366 [CrossRef]
    [Google Scholar]
  33. Prod’hom G., Guilhot C., Gutierrez M. C., Varnerot A., Gicquel B., Vincent V. 1997; Rapid discrimination of Mycobacterium tuberculosis complex strains by ligation-mediated PCR fingerprint analysis. J Clin Microbiol 35:3331–3334
    [Google Scholar]
  34. Prod’hom G., Lagier B., Pelicic V., Hance A. J., Gicquel B., Guilhot C. 1998; A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences. FEMS Microbiol Lett 158:75–81 [CrossRef]
    [Google Scholar]
  35. Raviglione M. C., Snider D., Kochi A. 1995; Global epidemiology of tuberculosis. JAMA (J Am Med Assoc) 273:220–226 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Siegele D. A., Kolter R. 1992; Life after log. J Bacteriol 174:345–348
    [Google Scholar]
  38. Sitnikov D. M., Schineller J. B., Baldwin T. O. 1996; Control of cell division in Escherichia coli: regulation of transcription of ftsQZ involves both rpoS and sdiA-mediated autoindiuction. Proc Natl Acad Sci USA 93:336–341 [CrossRef]
    [Google Scholar]
  39. Smeulders M. J., Keer J., Speight R. A., Williams H. D. 1999; Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol 181:270–283
    [Google Scholar]
  40. Smith B., Dyson P. 1995; Inducible transposition in Streptomyces lividans of insertion sequence IS6100 from Mycobacterium fortuitum. Mol Microbiol 18:933–941 [CrossRef]
    [Google Scholar]
  41. Spector M. P., Cubitt C. L. 1992; Starvation-inducible loci of Salmonella typhimurium – regulation and roles in starvation-survival. Mol Microbiol 6:1467–1476 [CrossRef]
    [Google Scholar]
  42. Tormo A., Almiron M., Kolter R. 1990; surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172:4339–4347
    [Google Scholar]
  43. Uhde C., Schmidt R., Jording D., Selbitschka W., Puhler A. 1997; Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth. J Bacteriol 179:6432–6440
    [Google Scholar]
  44. Van der Linden M. P. G., de Haan L., Hoyer M. A., Keck W. 1992; Possible role of Escherichia coli penicillin-binding protein-6 in stabilization of stationary-phase peptidoglycan. J Bacteriol 174:7572–7578
    [Google Scholar]
  45. Wayne L. G. 1994; Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13:908–914 [CrossRef]
    [Google Scholar]
  46. Wayne L. G., Hayes L. G. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069
    [Google Scholar]
  47. Wayne L. G., Lin K.-Y. 1982; Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37:1042–1049
    [Google Scholar]
  48. Yuan Y., Crane D. D., Barry C. E. III 1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol 178:4484–4492
    [Google Scholar]
  49. Zambrano M. M., Kolter R. 1996; Gasping for life in stationary phase. Cell 86:181–184 [CrossRef]
    [Google Scholar]
  50. Zambrano M. M., Siegele D. A., Almiron M., Tormo A., Kolter R. 1993; Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259:1757–1760 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-146-9-2209
Loading
/content/journal/micro/10.1099/00221287-146-9-2209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error