1887

Abstract

subsp. is a pathogen that causes chronic inflammation of the intestine in many animals, including primates, and is implicated in Crohn’s disease in humans. It differs from other members of the complex in having 14–18 copies of IS inserted into conserved loci in its genome. In the present study, genomic DNA flanking 14 of these insertions was characterized and homologues in the and subsp. genomes were identified. These included regions encoding a sigma factor () at locus 3, a nitrate reductase () at locus 4, a transcription regulator () and polyketide synthase at locus 6, and a 6--methylguanine methyltransferase at locus 9. In addition, locus numbers were assigned to 9 of 15 RFLP bands previously described. IS insertion at 7 of the 14 characterized loci was into the RBS of a gene substituting an RBS encoded by IS sited two bases closer to the initiation codon. IS insertion at five loci interrupted an ORF at the target site, one of which encoded a homologue of the immunodominant mycobacterial DesA1 protein. Eleven of eighty-one subsp. isolates lacked the insertion site at locus 6 together with flanking genomic DNA. This region was also absent from seven reference strains of subsp. , from one subsp. and from six other mycobacterial species. A multiplex PCR of IS loci (MPIL) typing method was developed which was able to discriminate 10 different types of subsp. from the panel of 81 isolates with consistent differences between those of bovine and ovine origin. Nine MPIL types corresponded with a single I/EII RFLP type, suggesting that this method may be applicable to typing of subsp. directly from a sample without the need for culture. The remaining MPIL type corresponded with seven I/EII RFLP types. Further resolution of these may come from sequencing the remaining four uncharacterized IS loci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2185
2000-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462185a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2185&mimeType=html&fmt=ahah

References

  1. Bartlett D. H., Silverman M. 1989; Nucleotide sequence of IS492, a novel insertion sequence causing variation in extracellular polysaccharide production in the marine bacterium Pseudomonas atlantica. J Bacteriol 17:1763–1766
    [Google Scholar]
  2. Bauerfeind R., Benazzi S., Weiss R., Schliesser T., Willems H., Baljer G. 1996; Molecular characterization of Mycobacterium paratuberculosis isolates from sheep, goats, and cattle by hybridization with a DNA probe to insertion element IS900. J Clin Microbiol 34:1617–1621
    [Google Scholar]
  3. Chen H., Bjerknes M., Kumar R., Jay E. 1994; Determination of the optimal aligned spacing between the Shine–Delgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 25:4953–4957
    [Google Scholar]
  4. Chiodini R. J. 1989; Crohn’s disease and the mycobacterioses: a review and comparison of two disease entities. Clin Microbiol Rev 2:90–117
    [Google Scholar]
  5. Cocito C., Gilot P., Coene M., de Kesel M., Poupart P., Vannuffel P. 1994; Paratuberculosis. Clin Microbiol Revs 7:328–345
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  7. Collins D. M., Gabric D. M., de Lisle G. W. 1990; Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization. J Clin Microbiol 28:1591–1596
    [Google Scholar]
  8. Collins D. M., Cavaignac S., de Lisle G. W. 1997; Use of four DNA insertion sequences to characterize strains of the Mycobacterium avium complex isolated from animals. Mol Cell Probes 11:373–380 [CrossRef]
    [Google Scholar]
  9. Doran T. J., Davies J. K., Radford A. J., Hodgson A. L. 1994; Putative functional domain within ORF2 on the Mycobacterium insertion sequences IS900 and IS902. Immunol Cell Biol 72:427–434 [CrossRef]
    [Google Scholar]
  10. Doran T., Tizard M., Millar D., Ford J., Sumar N., Loughlin M., Hermon-Taylor J. 1997; IS900 targets translation initiation signals in Mycobacterium avium subsp. paratuberculosis to facilitate expression of its hed gene. Microbiology 143:547–552 [CrossRef]
    [Google Scholar]
  11. Eiglmeier K., Honore N., Woods S. A., Caudron B., Cole S. T. 1993; Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae. Mol Microbiol 7:197–206 [CrossRef]
    [Google Scholar]
  12. El-Zaatari F. A. K., Naser S., Engstraud L., Hachem C. Y., Graham D. Y. 1994; Identification and characterisation of Mycobacterium paratuberculosis recombinant clones expressed in E. coli. Curr Microbiol 29:177–184 [CrossRef]
    [Google Scholar]
  13. Green E. P., Tizard M. L. V., Moss M. T., Thompson J., Winterbourne D. J., McFadden J. J., Hermon-Taylor J. 1989; Sequence and characteristics of IS900, an insertion element identified in a human Crohn’s disease isolate of Mycobacterium paratuberculosis. . Nucleic Acids Res 17:9063–9073 [CrossRef]
    [Google Scholar]
  14. Hermon-Taylor J., Bull T. J., Sheridan J. M., Cheng J., Stellakis M. L., Sumar N. 2000; The causation of Crohn’s disease by Mycobacterium avium subsp. paratuberculosis. Can J Gastroenterol 14:521–539
    [Google Scholar]
  15. Hernandez Perez M., Fomukong N. G., Hellyer T., Brown I. N., Dale J. W. 1994; Characterization of IS1110, a highly mobile genetic element from Mycobacterium avium. Mol Microbiol 12:717–724 [CrossRef]
    [Google Scholar]
  16. Jackson M., Portnoi D., Catheline D., Dumail L., Rauzier J., Legrand P., Gicquel B. 1997; Mycobacterium tuberculosis Des protein: an immunodominant target for the humoral response of tuberculosis patients. Infect Immunol 65:2883–2889
    [Google Scholar]
  17. Kallastu A., Horak R., Kivisaar M. 1998; Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida. J Bacteriol 180:5306–5312
    [Google Scholar]
  18. Kallinowski F., Wassmer A., Hofmann M. A., Harmsen D., Heesemann J., Karch H., Herfarth C., Buhr H. J. 1998; Prevalence of enteropathogenic bacteria in surgically treated chronic inflammatory bowel disease. Hepatogastroenterology 45:1552–1558
    [Google Scholar]
  19. Larsen A. B., Harley M. S., Moon W., Merkal R. S. 1971; Susceptibility of swine to Mycobacterium paratuberculosis. Am J Vet Res 32:589–595
    [Google Scholar]
  20. Lindahl T., Sedgewick B., Nakabeppu Y. 1988; Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem 57:133–157 [CrossRef]
    [Google Scholar]
  21. McClure H. M., Chiodini R. J., Anderson D. C., Swenson R. B., Thayer W. R., Coutu J. A. 1987; Mycobacterium paratuberculosis infection in a colony of Stumptail Macaques (Macaca arctoides). J Infect Dis 155:1011–1019 [CrossRef]
    [Google Scholar]
  22. McFadden J. J., Butcher P. D., Chiodini R., Hermon-Taylor J. 1987; Crohn’s disease isolated mycobacteria are identical to Mycobacterium paratuberculosis, as determined by DNA probes that distinguish between mycobacterial species. J Clin Microbiol 25:796–801
    [Google Scholar]
  23. Marvaud J. C., Eisel U., Binz T., Niemann H., Popoff M. R. 1998; TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR. Infect Immun 66:5698–5702
    [Google Scholar]
  24. Moreira A. R., Paolicchi F., Morsella C.7 other authors 1999; Distribution of IS900 restriction fragment length polymorphism types among animal Mycobacterium avium subsp. paratuberculosis isolates from Argentina and Europe. Vet Microbiol 70:251–259 [CrossRef]
    [Google Scholar]
  25. Moss M. T., Green E. P., Tizard M. L., Malik Z. P., Hermon-Taylor J. 1991; Specific detection of Mycobacterium paratuberculosis by DNA hybridisation with a fragment of the insertion element IS900. Gut 32:395–398 [CrossRef]
    [Google Scholar]
  26. Moss M. T., Malik Z. P., Tizard M. L. V., Green E. P., Sanderson J. D., Hermon-Taylor J. 1992; IS902, an insertion element of the chronic-enteritis-causing Mycobacterium avium subsp. silvaticum. J Gen Microbiol 138:139–145 [CrossRef]
    [Google Scholar]
  27. Pavlik I., Bejckova L., Pavlas M., Rozsypalova Z., Koskova S. 1995; Characterization by restriction endonuclease analysis and DNA hybridization using IS900 of bovine, ovine, caprine and human dependent strains of Mycobacterium paratuberculosis isolated in various localities. Vet Microbiol 45:311–318 [CrossRef]
    [Google Scholar]
  28. Pavlik I., Horvathova A., Dvorska L., Bartl J., Svastova P., du Maine R., Rychlik I. 1999; Standardisation of restriction fragment length polymorphism method for Mycobacterium avium subsp. paratuberculosis. J Microbiol Methods 38:155–167 [CrossRef]
    [Google Scholar]
  29. Portaels F., Larsson L., Smeets P. 1988; Isolation of mycobacteria from healthy persons’ stools. Int J Lepr Other Mycobact Dis 56:468–471
    [Google Scholar]
  30. Quadri L. E., Sello J., Keating T. A., Weinreb P. H., Walsh C. T. 1998; Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645 [CrossRef]
    [Google Scholar]
  31. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  32. Thoresen O. F., Olsaker I. 1994; Distribution and hybridization patterns of the insertion element IS900 in clinical isolates of Mycobacterium paratuberculosis. Vet Microbiol 40:293–303 [CrossRef]
    [Google Scholar]
  33. Tizard M. L., Moss M. T., Sanderson J. D., Austen B. M., Hermon-Taylor J. 1992; p43, the protein product of the atypical insertion sequence IS900, is expressed in Mycobacterium paratuberculosis. J Gen Microbiol 138:1729–1736 [CrossRef]
    [Google Scholar]
  34. USDA 1974 Laboratory Methods in Veterinary Mycobacteriology, rev. edn. Ames, IA: Veterinary Services Laboratories;
    [Google Scholar]
  35. Vellanoweth R. L., Rabinowitz J. C. 1992; The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo . Mol Microbiol 6:1105–1114 [CrossRef]
    [Google Scholar]
  36. Whipple D., Kapke P., Vary C. 1990; Identification of restriction fragment length polymorphisms in DNA from Mycobacterium paratuberculosis. J Clin Microbiol 28:2561–2564
    [Google Scholar]
  37. Whittington R. J., Marsh I., Turner M. J., McAllister S., Choy E., Eamens G. J., Marshall D. J., Ottaway S. 1998; Rapid detection of Mycobacterium paratuberculosis in clinical samples from ruminants and in spiked environmental samples by modified BACTEC 12B radiometric culture and direct confirmation by IS900 PCR. J Clin Microbiol 36:701–707
    [Google Scholar]
  38. Ziebuhr W., Krimmer V., Rachid S., Lossner I., Gotz F., Hacker J. 1999; A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2185
Loading
/content/journal/micro/10.1099/00221287-146-9-2185
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error