1887

Abstract

The cell surface of the surface layer (S-layer)-carrying strain of ATCC 12980 is completely covered with an oblique lattice composed of the S-layer protein SbsC. In the S-layer-deficient strain, theS-layer gene was still present but was interrupted by a novel type of insertion sequence (IS) element designated ISBst. The insertion site was found to be located within the coding region of the gene, 199 bp downstream from the translation start of SbsC. ISBst is 1612 bp long, bounded by 16 bp imperfect inverted repeats and flanked by a directly repeated 8 bp target sequence. ISBst contains an ORF of 1446 bp and is predicted to encode a putative transposase of 482 aa with a calculated theoretical molecular mass of 55562 Da and an isoelectric point of 913. The putative transposase does not exhibit a typical DDE motif but displays aHis-Arg-Tyr triad characteristic of the active site of integrases from the bacteriophage λ Int family. Furthermore, two overlapping leucine-zipper motifs were identified at the N-terminal part of the putative transposase. As revealed by Southern blotting, ISBst was present in multiple copies in the S-layer-deficient strain as well as in the S-layer-carrying strain. Northern blotting indicated that S-layer gene expression is already inhibited at the transcriptional level, since no -specific transcript could be identified in the S-layer-deficient strain. By using PCR, ISBst was also detected in PV72/p6, in its oxygen-induced strain variant PV72/p2 and in the S-layer-deficient strain PV72/T5.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2175
2000-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462175a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2175&mimeType=html&fmt=ahah

References

  1. Abremski K. E., Hoess R. H. 1992; Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng 5:87–91 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Archibald R. 1989; The Bacillus cell envelope. In Bacillus: Biotechnology Handbook 2 pp. 217–254Edited by Harwood C. R. New York: Plenum;
    [Google Scholar]
  4. Argos P., Landy A., Abremski K.9 other authors 1986; The integrase family of site-specific recombinases: regional similarity and global diversity. EMBO J 5:433–440
    [Google Scholar]
  5. Bartelmus W., Perschak F. 1957; Schnellmethode zur Keimzahlbestimmung in der Zuckerindustrie. Z Zuckerind 7:276–281
    [Google Scholar]
  6. Craig N. 1997; Target site selection in transposition. Annu Rev Biochem 66:437–474 [CrossRef]
    [Google Scholar]
  7. Dodd H. M., Horn N., Gasson M. J. 1994; Characterization of IS905, a new multicopy insertion sequence identified in Lactococci. J Bacteriol 176:3393–3396
    [Google Scholar]
  8. Eder J. 1983 Versuche zur Aufklärung der Funktion parakristalliner Proteinmembranen bei Bacillus stearothermophilus PhD thesis University of Agricultural Sciences; Vienna:
    [Google Scholar]
  9. Egelseer E. M., Schocher I., S á ra M., Sleytr U. B. 1995; The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J Bacteriol 177:1444–1451
    [Google Scholar]
  10. Egelseer E. M., Schocher I., Sleytr U. B., Sára M. 1996; Evidence that an N-terminal S-layer protein fragment triggers the release of a cell-associated high-molecular-weight amylase from Bacillus stearothermophilus ATTC 12980. J Bacteriol 178:5602–5609
    [Google Scholar]
  11. Gasson M. J., Fitzgerald G. F. 1993; Gene-tranfer systems and transposition. In Genetics and Biotechnology of Lactic Acid Bacteria pp. 1–51Edited by Gasson M. J., De Vos W. M. Glasgow: Blackie Academic and Professional;
    [Google Scholar]
  12. Gustafson C. E., Chu S., Trust T. 1994; Mutagenesis of the paracrystalline surface protein array of Aeromonas salmonicida by endogenous insertion elements. J Mol Biol 237:452–463 [CrossRef]
    [Google Scholar]
  13. Haren L., Bétermier M., Polard P., Chandler M. 1997; IS911-mediated intramolecular transposition is naturally temperature sensitive. Mol Microbiol 25:531–540 [CrossRef]
    [Google Scholar]
  14. Jain C., Kleckner N. 1993; Preferential cis action of IS10 transposase depends upon its mode of synthesis. Mol Microbiol 9:249–260 [CrossRef]
    [Google Scholar]
  15. Jarosch M., Egelseer E. M., Mattanovich D., Sleytr U. B., Sára M. 2000; S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli. Microbiology 146:273–281
    [Google Scholar]
  16. Kleckner N. 1990; Regulation of transposition in bacteria. Annu Rev Cell Biol 6:297–327 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  18. Landschulz W. H., Johnson P. F., McKnight S. L. 1988; The leucine zipper: a hypothetical structure common to a new class of DNA-binding proteins. Science 240:1759–1764 [CrossRef]
    [Google Scholar]
  19. Lei G.-S., Hu S.-T. 1997; Functional domains of InsA protein of IS2. J Bacteriol 179:6238–6243
    [Google Scholar]
  20. Machida Y., Sakurai M., Kiyokawa S., Ubasawa A., Suzuki Y., Ikeda J. E. 1984; Nucleotide sequence of the insertion sequence found in the T-DNA region of mutant Ti plasmid pTiA66 and distribution of its homologues in octopine Ti plasmid. Proc Natl Acad Sci USA 81:7495–7499 [CrossRef]
    [Google Scholar]
  21. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  22. Makarova K. S., Wolf Y. I., White O., Minton K., Daly M. J. 1999; Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other species. Res Microbiol 150:711–724 [CrossRef]
    [Google Scholar]
  23. Maxon M. E., Wigboldus J., Brot N., Weissbach H. 1990; Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci USA 87:7076–7079 [CrossRef]
    [Google Scholar]
  24. Messner P., Sleytr U. B. 1992; Crystalline bacterial cell surface layers. Adv Microb Physiol 33:213–275
    [Google Scholar]
  25. Ng W. L., Kothakota S., DasSarma S. 1991; Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. J Bacteriol 173:1958–1964
    [Google Scholar]
  26. Polard P., Chandler M. 1995; Bacterial transposases and retroviral integrases. Mol Microbiol 15:13–23 [CrossRef]
    [Google Scholar]
  27. Priest F. G. 1981; Products and applications. In Bacillus: Biotechnology Handbooks 2 pp. 293–320Edited by Harwood C. R. New York: Plenum;
    [Google Scholar]
  28. Rezsöhazy R., Hallet B., Delcour J., Mahillon J. 1993; The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol Microbiol 9:1283–1295 [CrossRef]
    [Google Scholar]
  29. Rost B., Sander C. 1993; Prediction of protein structure at better than 70% accuracy. J Mol Biol 232:584–599 [CrossRef]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sára M., Sleytr U. B. 2000; S-layer proteins. J Bacteriol 182:859–868 [CrossRef]
    [Google Scholar]
  32. Sára M., Kuen B., Mayer H. F., Mandl F., Schuster K. C., Sleytr U. B. 1996; Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and its S-layer deficient variant T5 in continuous culture and studies on the cell-wall composition. J Bacteriol 178:2108–2117
    [Google Scholar]
  33. Sasse-Dwight S., Gralla J. D. 1990; Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor σ54. Cell 62:945–954 [CrossRef]
    [Google Scholar]
  34. Schneiker S., Kosier B., Puehler A., Selbitschka W. 1999; The Sinorhizobium meliloti insertion sequence (IS) element ISRm14 is related to a previously unrecognized IS element located adjacent to the Escherichia coli locus of enterocyte effacement (LEE) pathogenicity island. Curr Microbiol 39:274–281 [CrossRef]
    [Google Scholar]
  35. Scholz H. 1998 Genetische Analyse der S-layer Protein Variation in Bacillus stearothermophilus PV72 PhD thesis University of Vienna;
    [Google Scholar]
  36. Serre M.-C., Turlan C., Bortolin M.-L., Chandler M. 1995; Mutagenesis of the IS1 transposase: importance of the His-Arg-Tyr triad for activity. J Bacteriol 177:5070–5077
    [Google Scholar]
  37. Sleytr U. B., Sára M. 1997; Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol 15:20–26 [CrossRef]
    [Google Scholar]
  38. Sleytr U. B., Messner P., Pum D., Eder J. 1982; Struktur und morphogenese periodischer proteinmembranen bei bakterien. Mikroskopie 39:215–232
    [Google Scholar]
  39. Sleytr U. B., Messner P., Pum D., Sára M. 1993; Crystalline bacterial cell surface layers. Mol Microbiol 10:911–916 [CrossRef]
    [Google Scholar]
  40. Sleytr U. B., Messner P., Pum D., Sára M. 1999; Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics and nanotechnology. Angew Chem Int Ed Engl 38:1034–1054 [CrossRef]
    [Google Scholar]
  41. Weinreich M. D., Mahnke-Braam L., Reznikoff W. S. 1993; A functional analysis of the Tn5 transposase: identification of domains required for DNA binding and multimerization. J Mol Biol 241:166–177
    [Google Scholar]
  42. White O., Eisen J. A., Heidelberg J. F.29 other authors 1999; Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577 [CrossRef]
    [Google Scholar]
  43. Yamasaki S., Shimizu T., Hoshino R., Ho S.-T., Shimada T., Nair G. B., Takeda Y. 1999; The genes responsible for O-antigen synthesis of Vibrio cholerae O139 are closely related to those of Vibrio cholerae O22. Gene 237:321–332 [CrossRef]
    [Google Scholar]
  44. Zheng J., McIntosh M. A. 1995; Characterization of IS1221 from Mycoplasma hyorhinis: expression of its putative transposase in Escherichia coli incorporates a ribosomal frameshift mechanism. Mol Microbiol 16:669–685 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2175
Loading
/content/journal/micro/10.1099/00221287-146-9-2175
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error