1887

Abstract

Sakacin A is a bacteriocin produced by Lb706. The gene cluster () encompasses a regulatory unit composed of three consecutive genes, and . encode a histidine protein kinase and a response regulator, while encodes the putative precursor of a 23-amino-acid cationic peptide (termed Sap-Ph). The authors show that Sap-Ph serves as a pheromone regulating bacteriocin production. Lb706 produced bacteriocin when the growth temperature was kept at 25 or 30 °C, but production was reduced or absent at higher temperatures (335–35 °C). Production was restored by lowering the growth temperature to 30 °C, but at temperatures of 33–34 °C also by adding exogenous Sap-Ph to the growth medium. A knock-out mutation in abolished sakacin A production. Exogenously added Sap-Ph complemented this mutation, unambiguously showing the essential role of this peptide for bacteriocin production. Another sakacin A producer, LTH1174, had a similar response to temperature and exogenously added Sap-Ph.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2155
2000-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462155a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2155&mimeType=html&fmt=ahah

References

  1. Axelsson, L. & Holck, A. ( 1995; ). The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sakei Lb706. J Bacteriol 177, 2125-2137.
    [Google Scholar]
  2. Brurberg, M. B., Nes, I. F. & Eijsink, V. G. H. ( 1997; ). Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26, 347-360.[CrossRef]
    [Google Scholar]
  3. Diep, D. B., Håvarstein, L. S. & Nes, I. F. ( 1995; ). A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18, 631-639.[CrossRef]
    [Google Scholar]
  4. Diep, D. B., Håvarstein, L. S. & Nes, I. F. ( 1996; ). Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178, 4472-4483.
    [Google Scholar]
  5. Eijsink, V. G. H., Brurberg, M. B., Middelhoven, P. H. & Nes, I. F. ( 1996; ). Induction of bacteriocin production in Lactobacillus sakei by a secreted peptide. J Bacteriol 178, 2232-2237.
    [Google Scholar]
  6. Holck, A., Axelsson, L., Birkeland, S.-E., Aukrust, T. & Blom, H. ( 1992; ). Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sakei Lb706. J Gen Microbiol 138, 2715-2720.[CrossRef]
    [Google Scholar]
  7. Horton, R. M. & Pease, L. R. ( 1991; ). Recombination and mutagenesis of DNA sequences using PCR. In Directed Mutagenesis: a Practical Approach , pp. 217-247. Edited by M. J. McPherson. Oxford, UK: IRL Press.
  8. Igo, M. M. & Losick, R. ( 1986; ). Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 191, 615-624.[CrossRef]
    [Google Scholar]
  9. Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P. & de Vos, W. M. ( 1997; ). Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24, 895-904.[CrossRef]
    [Google Scholar]
  10. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G. G. A., Luesink, E. J. & de Vos, W. M. ( 1995; ). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270, 27299-27304.[CrossRef]
    [Google Scholar]
  11. Lillehaug, D., Lindqvist, B. & Birkeland, N. K. ( 1991; ). Characterization of phiLC3, a Lactococcus lactis subsp. cremoris temperature bacteriophage with cohesive single-stranded DNA ends. Appl Environ Microbiol 57, 3206-3211.
    [Google Scholar]
  12. Nes, I. F., Diep, D. B., Håvarstein, L. S., Brurberg, M. B., Eijsink, V. & Holo, H. ( 1996; ). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 70, 113-128.[CrossRef]
    [Google Scholar]
  13. Nissen-Meyer, J., Larsen, A. G., Sletten, K., Daeschel, M. & Nes, I. F. ( 1993; ). Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol 139, 1973-1978.[CrossRef]
    [Google Scholar]
  14. Novick, R. P., Projan, S. J., Kornblum, J., Ross, H. F., Ji, G., Kreiswirth, B., Vandenesch, F. & Moghazeh, S. ( 1995; ). The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248, 446-458.[CrossRef]
    [Google Scholar]
  15. Pestova, E. V., Håvarstein, L. S. & Morrison, D. A. ( 1996; ). Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21, 853-862.[CrossRef]
    [Google Scholar]
  16. Risøen, P. A., Håvarstein, L. S., Diep, D. B. & Nes, I. F. ( 1998; ). Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum c11. Mol Gen Genet 259, 224-232.
    [Google Scholar]
  17. Schillinger, U. & Lücke, F.-K. ( 1989; ). Antibacterial activity of Lactobacillus sakei isolated from meat. Appl Environ Microbiol 55, 1901-1906.
    [Google Scholar]
  18. Stock, J. B., Ninfa, A. J. & Stock, A. M. ( 1989; ). Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53, 450-490.
    [Google Scholar]
  19. Tichaczek, P. S., Nissen-Meyer, J., Nes, I. F., Vogel, R. F. & Hammes, W. P. ( 1992; ). Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sakei LTH673. Syst Appl Microbiol 15, 460-468.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2155
Loading
/content/journal/micro/10.1099/00221287-146-9-2155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error