1887

Abstract

Sakacin A is a bacteriocin produced by Lb706. The gene cluster () encompasses a regulatory unit composed of three consecutive genes, and . encode a histidine protein kinase and a response regulator, while encodes the putative precursor of a 23-amino-acid cationic peptide (termed Sap-Ph). The authors show that Sap-Ph serves as a pheromone regulating bacteriocin production. Lb706 produced bacteriocin when the growth temperature was kept at 25 or 30 °C, but production was reduced or absent at higher temperatures (335–35 °C). Production was restored by lowering the growth temperature to 30 °C, but at temperatures of 33–34 °C also by adding exogenous Sap-Ph to the growth medium. A knock-out mutation in abolished sakacin A production. Exogenously added Sap-Ph complemented this mutation, unambiguously showing the essential role of this peptide for bacteriocin production. Another sakacin A producer, LTH1174, had a similar response to temperature and exogenously added Sap-Ph.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2155
2000-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462155a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2155&mimeType=html&fmt=ahah

References

  1. Axelsson L., Holck A. 1995; The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sakei Lb706. J Bacteriol 177:2125–2137
    [Google Scholar]
  2. Brurberg M. B., Nes I. F., Eijsink V. G. H. 1997; Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26:347–360 [CrossRef]
    [Google Scholar]
  3. Diep D. B., Håvarstein L. S., Nes I. F. 1995; A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639 [CrossRef]
    [Google Scholar]
  4. Diep D. B., Håvarstein L. S., Nes I. F. 1996; Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483
    [Google Scholar]
  5. Eijsink V. G. H., Brurberg M. B., Middelhoven P. H., Nes I. F. 1996; Induction of bacteriocin production in Lactobacillus sakei by a secreted peptide. J Bacteriol 178:2232–2237
    [Google Scholar]
  6. Holck A., Axelsson L., Birkeland S.-E., Aukrust T., Blom H. 1992; Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sakei Lb706. J Gen Microbiol 138:2715–2720 [CrossRef]
    [Google Scholar]
  7. Horton R. M., Pease L. R. 1991; Recombination and mutagenesis of DNA sequences using PCR. In Directed Mutagenesis: a Practical Approach pp. 217–247Edited by McPherson M. J. Oxford, UK: IRL Press;
    [Google Scholar]
  8. Igo M. M., Losick R. 1986; Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 191:615–624 [CrossRef]
    [Google Scholar]
  9. Kleerebezem M., Quadri L. E. N., Kuipers O. P., de Vos W. M. 1997; Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904 [CrossRef]
    [Google Scholar]
  10. Kuipers O. P., Beerthuyzen M. M., de Ruyter P. G. G. A., Luesink E. J., de Vos W. M. 1995; Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304 [CrossRef]
    [Google Scholar]
  11. Lillehaug D., Lindqvist B., Birkeland N. K. 1991; Characterization of phiLC3, a Lactococcus lactis subsp. cremoris temperature bacteriophage with cohesive single-stranded DNA ends. Appl Environ Microbiol 57:3206–3211
    [Google Scholar]
  12. Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsink V., Holo H. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 70:113–128 [CrossRef]
    [Google Scholar]
  13. Nissen-Meyer J., Larsen A. G., Sletten K., Daeschel M., Nes I. F. 1993; Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol 139:1973–1978 [CrossRef]
    [Google Scholar]
  14. Novick R. P., Projan S. J., Kornblum J., Ross H. F., Ji G., Kreiswirth B., Vandenesch F., Moghazeh S. 1995; The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248:446–458 [CrossRef]
    [Google Scholar]
  15. Pestova E. V., Håvarstein L. S., Morrison D. A. 1996; Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21:853–862 [CrossRef]
    [Google Scholar]
  16. Risøen P. A., Håvarstein L. S., Diep D. B., Nes I. F. 1998; Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum c11. Mol Gen Genet 259:224–232
    [Google Scholar]
  17. Schillinger U., Lücke F.-K. 1989; Antibacterial activity of Lactobacillus sakei isolated from meat. Appl Environ Microbiol 55:1901–1906
    [Google Scholar]
  18. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  19. Tichaczek P. S., Nissen-Meyer J., Nes I. F., Vogel R. F., Hammes W. P. 1992; Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sakei LTH673. Syst Appl Microbiol 15:460–468 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2155
Loading
/content/journal/micro/10.1099/00221287-146-9-2155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error