1887

Abstract

Complementation studies and allele replacement in revealed that /, an essential gene that encodes GDP-mannose pyrophosphorylase, is the wild-type gene. Cloning and sequencing of the allele showed that it determines a single amino acid change from glycine to aspartic acid at residue 276 ( ). Genetic evidence is presented showing that at least one further mutation is required for the sorbitol dependence of . A previously reported complementing gene, which this study has now identified as , is a multi-copy suppressor of sorbitol dependence and is not, as was previously suggested, the gene. and mutants share a number of phenotypes, including lysis upon hypotonic shock and enhanced transformability. These data are consistent with the idea that the Ras/cAMP pathway might modulate cell-wall construction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2133
2000-09-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462133a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2133&mimeType=html&fmt=ahah

References

  1. Albright C. F., Robbins P. W.. 1990; The sequence and transcript heterogeneity of the yeast gene ALG1, an essential mannosyltransferase involved in N-glycosylation. J Biol Chem265:7042–7049
    [Google Scholar]
  2. Arkinstall S. J., Papasavvas S. G., Payton M. A.. 1991; Yeast α-mating factor receptor-linked G-protein signal transduction suppresses Ras-dependent activity. FEBS Lett284:123–128[CrossRef]
    [Google Scholar]
  3. Baroni M. D., Monti P., Alberghina L.. 1994; Repression of growth-regulated G1 cyclin expression by cyclic-AMP in budding yeast. Nature371:339–342[CrossRef]
    [Google Scholar]
  4. Benton B. K., Driscoll-Plump S., Roos J., Lennarz W., Cross F.. 1996; Overexpression of Saccharomyces cerevisiae G1 cyclins restores the viability of alg1 N-glycosylation mutants. Curr Genet29:106–113
    [Google Scholar]
  5. Birnboim H. C., Doly J.. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523[CrossRef]
    [Google Scholar]
  6. Blagoeva J., Stoev G., Venkov P. V.. 1991; Glucan structure in a fragile mutant of Saccharomyces cerevisiae. Yeast7:455–461[CrossRef]
    [Google Scholar]
  7. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D.. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast14:115–132[CrossRef]
    [Google Scholar]
  8. Broach J. R., Deschenes R. J.. 1990; The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res54:79–139
    [Google Scholar]
  9. Broach J., Strathern J., Hicks J.. 1979; Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene8:121–133[CrossRef]
    [Google Scholar]
  10. Broach J. R.. 1991; RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet7:28–33[CrossRef]
    [Google Scholar]
  11. Bullock W. O., Fernandez J. M., Short J. M.. 1987; XL1-Blue: a high-efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques5:376–378
    [Google Scholar]
  12. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P.. 1992; Multifunctional yeast high-copy-number shuttle vectors. Gene110:119–122[CrossRef]
    [Google Scholar]
  13. Cid V. J., Duran A., Delrey F., Snyder M. P., Nombela C., Sanchez M.. 1995; Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev59:345–386
    [Google Scholar]
  14. Costigan C., Gehrung S., Snyder M.. 1992; A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol Cell Biol12:1162–1178
    [Google Scholar]
  15. Cross G. A. M.. 1990; Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol6:1–39[CrossRef]
    [Google Scholar]
  16. Delneri D., Gardner D. C., Bruschi C. V., Oliver S. G.. 1999; Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast15:1681–1689[CrossRef]
    [Google Scholar]
  17. Dirick L., Moll T., Auer H., Nasmyth K.. 1992; A central role for SWI6 in modulating cell cycle START-specific transcription in yeast. Nature357:508–513[CrossRef]
    [Google Scholar]
  18. Elliott B., Futcher B.. 1993; Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast9:33–42[CrossRef]
    [Google Scholar]
  19. Englund P. T.. 1993; The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem62:121–138[CrossRef]
    [Google Scholar]
  20. Garay-Arroyo A., Covarrubias A. A.. 1999; Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast15:879–892[CrossRef]
    [Google Scholar]
  21. Gardner D. C. J., Tomlin G. C., Cele T., Hamilton G. A., James C. M., Stateva L. I., Oliver S. G.. 1996; Physical mapping of the centromere-proximal region of chromosome IV-L defines the placement of genes USO1, MBP1, PSA1 and SLC1. Yeast12:411–413[CrossRef]
    [Google Scholar]
  22. Gentzsch M., Tanner W.. 1996; The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J15:5752–5759
    [Google Scholar]
  23. Gentzsch M., Tanner W.. 1997; Protein O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology7:481–486[CrossRef]
    [Google Scholar]
  24. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R.. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell68:1077–1090[CrossRef]
    [Google Scholar]
  25. Hashimoto H., Sakakibara Y., Yamasaki M., Yoda K.. 1997; Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation. J Biol Chem272:16308–16314[CrossRef]
    [Google Scholar]
  26. Heery D. M., Cannon F., Powell R.. 1990; A simple method for subcloning DNA fragments from gel slices. Trends Genet6:173[CrossRef]
    [Google Scholar]
  27. Herscovics A., Orlean P.. 1993; Glycoprotein biosynthesis in yeast. FASEB J7:540–550
    [Google Scholar]
  28. Hill J., Ian K. A., Donald G., Griffiths D. E.. 1991; DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res19:5791[CrossRef]
    [Google Scholar]
  29. Innis M. A., Gelfand D. H.. 1990; Optimization of PCR. In PCR Protocols – A Guide to Methods and Applications pp.3–12Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J.. San Diego, CA: Academic Press;
    [Google Scholar]
  30. Irie K., Levin D. E., Levin K. S., Bakase M., Araki H., Matsumoto K., Oshima Y.. 1993; MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen activated protein kinase kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol13:3076–3083
    [Google Scholar]
  31. Ito H., Fukuda Y., Murata K., Kimara A.. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol153:163–168
    [Google Scholar]
  32. James C. M., Indge K. J., Oliver S. G.. 1995; DNA sequence analysis of a 35 kb segment from Saccharomyces cerevisiae chromosome VII reveals 19 open reading frames including RAD54, ACE1/CUP2, PMR1, RCK1, AMS1 and CAL1/CDC43. Yeast11:1413–1419[CrossRef]
    [Google Scholar]
  33. Kaiser C., Michaelis S., Mitchell A.. 1994; Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Klis F. M.. 1994; Cell-wall assembly in yeast. Yeast10:851–869[CrossRef]
    [Google Scholar]
  35. Kobayashi O., Suda H., Ohtani T., Sone H.. 1996; Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet251:707–715
    [Google Scholar]
  36. Kopecka M., Gabriel M., Necas O., Svoboda A., Venkov P. V.. 1991; Cell surface structures in osmotically fragile mutants of Saccharomyces cerevisiae. J Gen Microbiol137:1263–1270[CrossRef]
    [Google Scholar]
  37. Kozhina T., Stateva L., Venkov P.. 1979; Genetic analysis of an osmotic sensitive Saccharomyces cerevisiae mutant. Mol Gen Genet170:351–354[CrossRef]
    [Google Scholar]
  38. Kukuruzinska M. A., Bergh M. L. E., Jackson B. J.. 1987; Protein glycosylation in yeast. Annu Rev Biochem56:915–944[CrossRef]
    [Google Scholar]
  39. Lee K. S., Levin D. E.. 1992; Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypasses the requirement for Saccharomyces cerevisiae protein kinase C homolog. Mol Cell Biol12:172–182
    [Google Scholar]
  40. Lee K., Irie K., Gotoh Y., Watanabe Y., Araki H., Nishida E., Matsumoto K., Levin D.. 1993; A yeast mitogen activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol13:3067–3075
    [Google Scholar]
  41. Leidich S. D., Kostova Z., Latek R. R., Costello L. C., Drapp D. A., Gray W., Fassler J. S., Orlean P.. 1995; Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol: cloning of the GPI2 gene. J Biol Chem270:13029–13035[CrossRef]
    [Google Scholar]
  42. Levin D. E., Bartlett-Heubusch E.. 1992; Mutants in the Saccharomyces cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol116:1221–1229[CrossRef]
    [Google Scholar]
  43. Lussier M., Sdicu A. M., Camirand A., Bussey H.. 1996; Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family. J Biol Chem271:11001–11008[CrossRef]
    [Google Scholar]
  44. Lussier M., Sdicu A. M., Bussereau F., Jacquet M., Bussey H.. 1997a; The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. J Biol Chem272:15527–15531[CrossRef]
    [Google Scholar]
  45. Lussier M., Sdicu A. M., Winnett E., Vo D. H., Sheraton J., Dusterhoft A., Storms R. K., Bussey H.. 1997b; Completion of the Saccharomyces cerevisiae genome sequence allows identification of KTR5, KTR6 and KTR7 and definition of the nine-membered KRE2/MNT1 mannosyltransferase gene family in this organism. Yeast13:267–274[CrossRef]
    [Google Scholar]
  46. Lussier M., White A. M., Sheraton J..17 other authors 1997c; Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics147:435–450
    [Google Scholar]
  47. Madden K., Sheu Y. J., Baetz K., Andrews B., Snyder M.. 1997; SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science275:1781–1784[CrossRef]
    [Google Scholar]
  48. Maerkisch U., Reuter G., Stateva L. I., Venkov P.. 1983; Mannan structure analysis of the fragile Saccharomyces cerevisiae mutant VY1160. Int J Biochem15:1373–1377[CrossRef]
    [Google Scholar]
  49. Marini N. J., Meldrum E., Buehrer B., Hubberstey A. V., Stone D. E., Traynor-Kaplan A., Reed S. I.. 1996; A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START. EMBO J15:3040–3052
    [Google Scholar]
  50. Martinez-Pastor M. T., Marchler G., Schuller C., Marchler-Bauer A., Ruis H., Estruch F.. 1996; The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J15:2227–2235
    [Google Scholar]
  51. Matsumoto K., Uno I., Toh-e A., Ishikawa T., Oshima Y.. 1982; Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants capable of utilizing it as an adenosine source. J Bacteriol150:277–285
    [Google Scholar]
  52. Mazzoni C., Zarzov P., Rambourg A., Mann C.. 1993; The SLT2/MPK1 MAP kinase homolog is involved in polarised growth in Saccharomyces cerevisiae. J Cell Biol123:1821–1833[CrossRef]
    [Google Scholar]
  53. Molina M., Martin H., Sanchez M., Nombela C.. 1998; MAP kinase-mediated signal transduction pathways. In Yeast Gene Analysis: Methods in Microbiology pp.375–393Edited by Brown A. J. P., Tuite M. F.. San Diego, CA: Academic Press;
    [Google Scholar]
  54. Mosch H. U., Kubler E., Krappmann S., Fink G. R., Braus G. H.. 1999; Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell10:1325–1335[CrossRef]
    [Google Scholar]
  55. Nakayama K., Feng Y., Tanaka A., Jigami Y.. 1998; The involvement of mnn4 and mnn6 mutations in mannosylphosphorylation of O-linked oligosaccharide in yeast Saccharomyces cerevisiae. Biochim Biophys Acta1425:255–262[CrossRef]
    [Google Scholar]
  56. Nikawa J., Sass P., Wigler M.. 1987; Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol7:3629–3636
    [Google Scholar]
  57. Norbeck J., Blomberg A.. 2000; The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast16:121–137[CrossRef]
    [Google Scholar]
  58. Odani T., Shimma Y., Tanaka A., Jigami Y.. 1996; Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology6:805–810[CrossRef]
    [Google Scholar]
  59. Odani T., Shimma Y., Wang X. H., Jigami Y.. 1997; Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett420:186–190[CrossRef]
    [Google Scholar]
  60. Orlean P.. 1990; Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O-mannosylation, and N-glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol10:5796–5805
    [Google Scholar]
  61. Orlean P.. 1997; Biogenesis of yeast wall and surface components. In The Molecular Biology of the Yeast Saccharomyces pp.229–362Edited by Pringle J. R., Broach J. R., Jones E. W.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  62. Orlean P., Albright C., Robbins P. W.. 1988; Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem263:17499–17507
    [Google Scholar]
  63. Pan X., Heitman J.. 1999; Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol19:4874–4887
    [Google Scholar]
  64. Paravicini G., Cooper M., Friedli L., Smith D. J., Carpenter J. L., Klig L., Payton M. A.. 1992; The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol Cell Biol12:4896–4905
    [Google Scholar]
  65. Parry J. M., Davies P. J., Evans W. E.. 1976; The effects of ‘cell age’ upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae. Mol Gen Genet146:27–35[CrossRef]
    [Google Scholar]
  66. Philipova D.. 1985; Transformation of fragile mutants of S. cerevisiae PhD thesis Bulgarian Academy of Science;
    [Google Scholar]
  67. Ram A. F., Wolters A., Ten Hoopen R., Klis F. M.. 1994; A new approach for isolating cell-wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast10:1019–1030[CrossRef]
    [Google Scholar]
  68. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G.. 1987; A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene60:237–243[CrossRef]
    [Google Scholar]
  69. Rupp S., Summers E., Lo H. J., Madhani H., Fink G.. 1999; MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J18:1257–1269[CrossRef]
    [Google Scholar]
  70. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  71. Sasaki T., Toh-e A., Kikuchi Y. 2000; Extragenic suppressors that rescue defects in the heat stress response of the budding yeast mutant tom1. Mol Gen Genet262:940–948[CrossRef]
    [Google Scholar]
  72. Sass P., Field J., Nikawa J., Toda T., Wigler M.. 1986; Cloning and characterisation of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA83:9303–9307[CrossRef]
    [Google Scholar]
  73. Schmitt A. P., McEntee K.. 1996; Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA93:5777–5782[CrossRef]
    [Google Scholar]
  74. Sherman F., Fink G. R., Hicks J. B.. 1986; Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  75. Shimma Y., Nishikawa A., bin Kassim B., Eto A., Jigami Y.. 1997; A defect in GTP synthesis affects mannose outer chain elongation in Saccharomyces cerevisiae. Mol Gen Genet256:469–480[CrossRef]
    [Google Scholar]
  76. Sikorski R. S., Hieter P.. 1989; A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics122:19–27
    [Google Scholar]
  77. Stateva L. I., Oliver S. G., Trueman L. J., Venkov P. V.. 1991; Cloning and characterisation of a gene which determines osmotic stability in Saccharomyces cerevisiae. Mol Cell Biol11:4235–4243
    [Google Scholar]
  78. Tanner W., Lehle L.. 1987; Protein glycosylation in yeast. Biochim Biophys Acta906:81–99[CrossRef]
    [Google Scholar]
  79. Thevelein J. M.. 1994; Signal transduction in yeast. Yeast10:1753–1790[CrossRef]
    [Google Scholar]
  80. Thevelein J. M., de Winde J. H.. 1999; Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol33:904–918[CrossRef]
    [Google Scholar]
  81. Toda T., Cameron S., Sass P., Wigler M.. 1987a; Three different genes in the yeast Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell50:277–287[CrossRef]
    [Google Scholar]
  82. Toda T., Cameron S., Sass P., Zoller M., Scott J. D., McMullen B., Hurwitz M., Krebs E. G., Wigler M.. 1987b; Cloning and characterisation of BCY1, a locus encoding the regulatory subunit of the cAMP-dependent protein kinase in yeast. Mol Cell Biol7:1371–1377
    [Google Scholar]
  83. Tokiwa G., Tyers M., Volpe T., Futcher B.. 1994; Inhibition of G1 cyclin activity by the RAS/cAMP pathway in yeast. Nature371:342–345[CrossRef]
    [Google Scholar]
  84. Trevillyan J. M., Pall M. L.. 1979; Control of cAMP levels by depolarising agents in fungi. J Bacteriol138:397–403
    [Google Scholar]
  85. Varela J. C., Praekelt U. M., Meacock P. A., Planta R. J., Mager W. H.. 1995; The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol15:6232–6245
    [Google Scholar]
  86. Venkov P. V., Hadjiolov A. A., Battaner E., Schlessinger D.. 1974; Saccharomyces cerevisiae sorbitol dependent fragile mutants. Biochem Biophys Res Commun56:559–604
    [Google Scholar]
  87. Venkov P. V., Milchev G. I., Hadjiolov A. A.. 1975; Rifampicin susceptibility of ribonucleic acid synthesis in a fragile Saccharomyces cerevisiae mutant. Antimicrob Agents Chemother8:627–632[CrossRef]
    [Google Scholar]
  88. Waltschewa L. W., Venkov P. V., Stoyanova B. B., Hadjiolov A. A.. 1976; Degradation of ribosomal precursor and polyadenylic acid-containing ribonucleic acids in Saccharomyces cerevisiae caused by actinomycin D. Arch Biochem Biophys176:630–637[CrossRef]
    [Google Scholar]
  89. Wang X. H., Nakayama K., Shimma Y., Tanaka A., Jigami Y . 1997; MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae. J Biol Chem272:18117–18124[CrossRef]
    [Google Scholar]
  90. Ward A. C.. 1990; Single step purification of shuttle vectors from yeast for high frequency back transformation into Escherichia coli. Nucleic Acids Res18:5319[CrossRef]
    [Google Scholar]
  91. Werner-Washburne M., Braun E., Johnston G. C., Singer R. A.. 1993; Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev57:383–401
    [Google Scholar]
  92. Wilson R. B., Tatchell K.. 1988; SRA5 encodes the low K m cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol8:505–510
    [Google Scholar]
  93. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  94. Yip C. L., Welch S. K., Klebl F., Gilbert T., Seidel P., Grant F. J., O’Hara P. J., MacKay V. L.. 1994; Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA91:2723–2727[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2133
Loading
/content/journal/micro/10.1099/00221287-146-9-2133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error