1887

Abstract

Complementation studies and allele replacement in revealed that /, an essential gene that encodes GDP-mannose pyrophosphorylase, is the wild-type gene. Cloning and sequencing of the allele showed that it determines a single amino acid change from glycine to aspartic acid at residue 276 ( ). Genetic evidence is presented showing that at least one further mutation is required for the sorbitol dependence of . A previously reported complementing gene, which this study has now identified as , is a multi-copy suppressor of sorbitol dependence and is not, as was previously suggested, the gene. and mutants share a number of phenotypes, including lysis upon hypotonic shock and enhanced transformability. These data are consistent with the idea that the Ras/cAMP pathway might modulate cell-wall construction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2133
2000-09-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462133a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2133&mimeType=html&fmt=ahah

References

  1. Albright C. F., Robbins P. W. 1990; The sequence and transcript heterogeneity of the yeast gene ALG1, an essential mannosyltransferase involved in N-glycosylation. J Biol Chem 265:7042–7049
    [Google Scholar]
  2. Arkinstall S. J., Papasavvas S. G., Payton M. A. 1991; Yeast α-mating factor receptor-linked G-protein signal transduction suppresses Ras-dependent activity. FEBS Lett 284:123–128 [CrossRef]
    [Google Scholar]
  3. Baroni M. D., Monti P., Alberghina L. 1994; Repression of growth-regulated G1 cyclin expression by cyclic-AMP in budding yeast. Nature 371:339–342 [CrossRef]
    [Google Scholar]
  4. Benton B. K., Driscoll-Plump S., Roos J., Lennarz W., Cross F. 1996; Overexpression of Saccharomyces cerevisiae G1 cyclins restores the viability of alg1 N-glycosylation mutants. Curr Genet 29:106–113
    [Google Scholar]
  5. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  6. Blagoeva J., Stoev G., Venkov P. V. 1991; Glucan structure in a fragile mutant of Saccharomyces cerevisiae. Yeast 7:455–461 [CrossRef]
    [Google Scholar]
  7. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132 [CrossRef]
    [Google Scholar]
  8. Broach J. R., Deschenes R. J. 1990; The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res 54:79–139
    [Google Scholar]
  9. Broach J., Strathern J., Hicks J. 1979; Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133 [CrossRef]
    [Google Scholar]
  10. Broach J. R. 1991; RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet 7:28–33 [CrossRef]
    [Google Scholar]
  11. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue: a high-efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5:376–378
    [Google Scholar]
  12. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. 1992; Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122 [CrossRef]
    [Google Scholar]
  13. Cid V. J., Duran A., Delrey F., Snyder M. P., Nombela C., Sanchez M. 1995; Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386
    [Google Scholar]
  14. Costigan C., Gehrung S., Snyder M. 1992; A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol Cell Biol 12:1162–1178
    [Google Scholar]
  15. Cross G. A. M. 1990; Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol 6:1–39 [CrossRef]
    [Google Scholar]
  16. Delneri D., Gardner D. C., Bruschi C. V., Oliver S. G. 1999; Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast 15:1681–1689 [CrossRef]
    [Google Scholar]
  17. Dirick L., Moll T., Auer H., Nasmyth K. 1992; A central role for SWI6 in modulating cell cycle START-specific transcription in yeast. Nature 357:508–513 [CrossRef]
    [Google Scholar]
  18. Elliott B., Futcher B. 1993; Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9:33–42 [CrossRef]
    [Google Scholar]
  19. Englund P. T. 1993; The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem 62:121–138 [CrossRef]
    [Google Scholar]
  20. Garay-Arroyo A., Covarrubias A. A. 1999; Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15:879–892 [CrossRef]
    [Google Scholar]
  21. Gardner D. C. J., Tomlin G. C., Cele T., Hamilton G. A., James C. M., Stateva L. I., Oliver S. G. 1996; Physical mapping of the centromere-proximal region of chromosome IV-L defines the placement of genes USO1, MBP1, PSA1 and SLC1. Yeast 12:411–413 [CrossRef]
    [Google Scholar]
  22. Gentzsch M., Tanner W. 1996; The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15:5752–5759
    [Google Scholar]
  23. Gentzsch M., Tanner W. 1997; Protein O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology 7:481–486 [CrossRef]
    [Google Scholar]
  24. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090 [CrossRef]
    [Google Scholar]
  25. Hashimoto H., Sakakibara Y., Yamasaki M., Yoda K. 1997; Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation. J Biol Chem 272:16308–16314 [CrossRef]
    [Google Scholar]
  26. Heery D. M., Cannon F., Powell R. 1990; A simple method for subcloning DNA fragments from gel slices. Trends Genet 6:173 [CrossRef]
    [Google Scholar]
  27. Herscovics A., Orlean P. 1993; Glycoprotein biosynthesis in yeast. FASEB J 7:540–550
    [Google Scholar]
  28. Hill J., Ian K. A., Donald G., Griffiths D. E. 1991; DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:5791 [CrossRef]
    [Google Scholar]
  29. Innis M. A., Gelfand D. H. 1990; Optimization of PCR. In PCR Protocols – A Guide to Methods and Applications pp. 3–12Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego, CA: Academic Press;
    [Google Scholar]
  30. Irie K., Levin D. E., Levin K. S., Bakase M., Araki H., Matsumoto K., Oshima Y. 1993; MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen activated protein kinase kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13:3076–3083
    [Google Scholar]
  31. Ito H., Fukuda Y., Murata K., Kimara A. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168
    [Google Scholar]
  32. James C. M., Indge K. J., Oliver S. G. 1995; DNA sequence analysis of a 35 kb segment from Saccharomyces cerevisiae chromosome VII reveals 19 open reading frames including RAD54, ACE1/CUP2, PMR1, RCK1, AMS1 and CAL1/CDC43. Yeast 11:1413–1419 [CrossRef]
    [Google Scholar]
  33. Kaiser C., Michaelis S., Mitchell A. 1994 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Klis F. M. 1994; Cell-wall assembly in yeast. Yeast 10:851–869 [CrossRef]
    [Google Scholar]
  35. Kobayashi O., Suda H., Ohtani T., Sone H. 1996; Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet 251:707–715
    [Google Scholar]
  36. Kopecka M., Gabriel M., Necas O., Svoboda A., Venkov P. V. 1991; Cell surface structures in osmotically fragile mutants of Saccharomyces cerevisiae. J Gen Microbiol 137:1263–1270 [CrossRef]
    [Google Scholar]
  37. Kozhina T., Stateva L., Venkov P. 1979; Genetic analysis of an osmotic sensitive Saccharomyces cerevisiae mutant. Mol Gen Genet 170:351–354 [CrossRef]
    [Google Scholar]
  38. Kukuruzinska M. A., Bergh M. L. E., Jackson B. J. 1987; Protein glycosylation in yeast. Annu Rev Biochem 56:915–944 [CrossRef]
    [Google Scholar]
  39. Lee K. S., Levin D. E. 1992; Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypasses the requirement for Saccharomyces cerevisiae protein kinase C homolog. Mol Cell Biol 12:172–182
    [Google Scholar]
  40. Lee K., Irie K., Gotoh Y., Watanabe Y., Araki H., Nishida E., Matsumoto K., Levin D. 1993; A yeast mitogen activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13:3067–3075
    [Google Scholar]
  41. Leidich S. D., Kostova Z., Latek R. R., Costello L. C., Drapp D. A., Gray W., Fassler J. S., Orlean P. 1995; Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol: cloning of the GPI2 gene. J Biol Chem 270:13029–13035 [CrossRef]
    [Google Scholar]
  42. Levin D. E., Bartlett-Heubusch E. 1992; Mutants in the Saccharomyces cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116:1221–1229 [CrossRef]
    [Google Scholar]
  43. Lussier M., Sdicu A. M., Camirand A., Bussey H. 1996; Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family. J Biol Chem 271:11001–11008 [CrossRef]
    [Google Scholar]
  44. Lussier M., Sdicu A. M., Bussereau F., Jacquet M., Bussey H. 1997a; The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. J Biol Chem 272:15527–15531 [CrossRef]
    [Google Scholar]
  45. Lussier M., Sdicu A. M., Winnett E., Vo D. H., Sheraton J., Dusterhoft A., Storms R. K., Bussey H. 1997b; Completion of the Saccharomyces cerevisiae genome sequence allows identification of KTR5, KTR6 and KTR7 and definition of the nine-membered KRE2/MNT1 mannosyltransferase gene family in this organism. Yeast 13:267–274 [CrossRef]
    [Google Scholar]
  46. Lussier M., White A. M., Sheraton J.17 other authors 1997c; Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147:435–450
    [Google Scholar]
  47. Madden K., Sheu Y. J., Baetz K., Andrews B., Snyder M. 1997; SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275:1781–1784 [CrossRef]
    [Google Scholar]
  48. Maerkisch U., Reuter G., Stateva L. I., Venkov P. 1983; Mannan structure analysis of the fragile Saccharomyces cerevisiae mutant VY1160. Int J Biochem 15:1373–1377 [CrossRef]
    [Google Scholar]
  49. Marini N. J., Meldrum E., Buehrer B., Hubberstey A. V., Stone D. E., Traynor-Kaplan A., Reed S. I. 1996; A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START. EMBO J 15:3040–3052
    [Google Scholar]
  50. Martinez-Pastor M. T., Marchler G., Schuller C., Marchler-Bauer A., Ruis H., Estruch F. 1996; The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235
    [Google Scholar]
  51. Matsumoto K., Uno I., Toh-e A., Ishikawa T., Oshima Y. 1982; Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants capable of utilizing it as an adenosine source. J Bacteriol 150:277–285
    [Google Scholar]
  52. Mazzoni C., Zarzov P., Rambourg A., Mann C. 1993; The SLT2/MPK1 MAP kinase homolog is involved in polarised growth in Saccharomyces cerevisiae. J Cell Biol 123:1821–1833 [CrossRef]
    [Google Scholar]
  53. Molina M., Martin H., Sanchez M., Nombela C. 1998; MAP kinase-mediated signal transduction pathways. In Yeast Gene Analysis: Methods in Microbiology pp. 375–393Edited by Brown A. J. P., Tuite M. F. San Diego, CA: Academic Press;
    [Google Scholar]
  54. Mosch H. U., Kubler E., Krappmann S., Fink G. R., Braus G. H. 1999; Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10:1325–1335 [CrossRef]
    [Google Scholar]
  55. Nakayama K., Feng Y., Tanaka A., Jigami Y. 1998; The involvement of mnn4 and mnn6 mutations in mannosylphosphorylation of O-linked oligosaccharide in yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1425:255–262 [CrossRef]
    [Google Scholar]
  56. Nikawa J., Sass P., Wigler M. 1987; Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol 7:3629–3636
    [Google Scholar]
  57. Norbeck J., Blomberg A. 2000; The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16:121–137 [CrossRef]
    [Google Scholar]
  58. Odani T., Shimma Y., Tanaka A., Jigami Y. 1996; Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6:805–810 [CrossRef]
    [Google Scholar]
  59. Odani T., Shimma Y., Wang X. H., Jigami Y. 1997; Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420:186–190 [CrossRef]
    [Google Scholar]
  60. Orlean P. 1990; Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O-mannosylation, and N-glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol 10:5796–5805
    [Google Scholar]
  61. Orlean P. 1997; Biogenesis of yeast wall and surface components. In The Molecular Biology of the Yeast Saccharomyces pp. 229–362Edited by Pringle J. R., Broach J. R., Jones E. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  62. Orlean P., Albright C., Robbins P. W. 1988; Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem 263:17499–17507
    [Google Scholar]
  63. Pan X., Heitman J. 1999; Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19:4874–4887
    [Google Scholar]
  64. Paravicini G., Cooper M., Friedli L., Smith D. J., Carpenter J. L., Klig L., Payton M. A. 1992; The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol Cell Biol 12:4896–4905
    [Google Scholar]
  65. Parry J. M., Davies P. J., Evans W. E. 1976; The effects of ‘cell age’ upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae. Mol Gen Genet 146:27–35 [CrossRef]
    [Google Scholar]
  66. Philipova D. 1985 Transformation of fragile mutants of S. cerevisiae PhD thesis Bulgarian Academy of Science;
    [Google Scholar]
  67. Ram A. F., Wolters A., Ten Hoopen R., Klis F. M. 1994; A new approach for isolating cell-wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10:1019–1030 [CrossRef]
    [Google Scholar]
  68. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. 1987; A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243 [CrossRef]
    [Google Scholar]
  69. Rupp S., Summers E., Lo H. J., Madhani H., Fink G. 1999; MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269 [CrossRef]
    [Google Scholar]
  70. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  71. Sasaki T., Toh-e A., Kikuchi Y. 2000; Extragenic suppressors that rescue defects in the heat stress response of the budding yeast mutant tom1. Mol Gen Genet 262:940–948 [CrossRef]
    [Google Scholar]
  72. Sass P., Field J., Nikawa J., Toda T., Wigler M. 1986; Cloning and characterisation of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83:9303–9307 [CrossRef]
    [Google Scholar]
  73. Schmitt A. P., McEntee K. 1996; Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782 [CrossRef]
    [Google Scholar]
  74. Sherman F., Fink G. R., Hicks J. B. 1986 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  75. Shimma Y., Nishikawa A., bin Kassim B., Eto A., Jigami Y. 1997; A defect in GTP synthesis affects mannose outer chain elongation in Saccharomyces cerevisiae. Mol Gen Genet 256:469–480 [CrossRef]
    [Google Scholar]
  76. Sikorski R. S., Hieter P. 1989; A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
    [Google Scholar]
  77. Stateva L. I., Oliver S. G., Trueman L. J., Venkov P. V. 1991; Cloning and characterisation of a gene which determines osmotic stability in Saccharomyces cerevisiae. Mol Cell Biol 11:4235–4243
    [Google Scholar]
  78. Tanner W., Lehle L. 1987; Protein glycosylation in yeast. Biochim Biophys Acta 906:81–99 [CrossRef]
    [Google Scholar]
  79. Thevelein J. M. 1994; Signal transduction in yeast. Yeast 10:1753–1790 [CrossRef]
    [Google Scholar]
  80. Thevelein J. M., de Winde J. H. 1999; Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918 [CrossRef]
    [Google Scholar]
  81. Toda T., Cameron S., Sass P., Wigler M. 1987a; Three different genes in the yeast Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287 [CrossRef]
    [Google Scholar]
  82. Toda T., Cameron S., Sass P., Zoller M., Scott J. D., McMullen B., Hurwitz M., Krebs E. G., Wigler M. 1987b; Cloning and characterisation of BCY1, a locus encoding the regulatory subunit of the cAMP-dependent protein kinase in yeast. Mol Cell Biol 7:1371–1377
    [Google Scholar]
  83. Tokiwa G., Tyers M., Volpe T., Futcher B. 1994; Inhibition of G1 cyclin activity by the RAS/cAMP pathway in yeast. Nature 371:342–345 [CrossRef]
    [Google Scholar]
  84. Trevillyan J. M., Pall M. L. 1979; Control of cAMP levels by depolarising agents in fungi. J Bacteriol 138:397–403
    [Google Scholar]
  85. Varela J. C., Praekelt U. M., Meacock P. A., Planta R. J., Mager W. H. 1995; The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15:6232–6245
    [Google Scholar]
  86. Venkov P. V., Hadjiolov A. A., Battaner E., Schlessinger D. 1974; Saccharomyces cerevisiae sorbitol dependent fragile mutants. Biochem Biophys Res Commun 56:559–604
    [Google Scholar]
  87. Venkov P. V., Milchev G. I., Hadjiolov A. A. 1975; Rifampicin susceptibility of ribonucleic acid synthesis in a fragile Saccharomyces cerevisiae mutant. Antimicrob Agents Chemother 8:627–632 [CrossRef]
    [Google Scholar]
  88. Waltschewa L. W., Venkov P. V., Stoyanova B. B., Hadjiolov A. A. 1976; Degradation of ribosomal precursor and polyadenylic acid-containing ribonucleic acids in Saccharomyces cerevisiae caused by actinomycin D. Arch Biochem Biophys 176:630–637 [CrossRef]
    [Google Scholar]
  89. Wang X. H., Nakayama K., Shimma Y., Tanaka A., Jigami Y . 1997; MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae. J Biol Chem 272:18117–18124 [CrossRef]
    [Google Scholar]
  90. Ward A. C. 1990; Single step purification of shuttle vectors from yeast for high frequency back transformation into Escherichia coli. Nucleic Acids Res 18:5319 [CrossRef]
    [Google Scholar]
  91. Werner-Washburne M., Braun E., Johnston G. C., Singer R. A. 1993; Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401
    [Google Scholar]
  92. Wilson R. B., Tatchell K. 1988; SRA5 encodes the low K m cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol 8:505–510
    [Google Scholar]
  93. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  94. Yip C. L., Welch S. K., Klebl F., Gilbert T., Seidel P., Grant F. J., O’Hara P. J., MacKay V. L. 1994; Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA 91:2723–2727 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2133
Loading
/content/journal/micro/10.1099/00221287-146-9-2133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error