1887

Abstract

Complementation studies and allele replacement in revealed that /, an essential gene that encodes GDP-mannose pyrophosphorylase, is the wild-type gene. Cloning and sequencing of the allele showed that it determines a single amino acid change from glycine to aspartic acid at residue 276 ( ). Genetic evidence is presented showing that at least one further mutation is required for the sorbitol dependence of . A previously reported complementing gene, which this study has now identified as , is a multi-copy suppressor of sorbitol dependence and is not, as was previously suggested, the gene. and mutants share a number of phenotypes, including lysis upon hypotonic shock and enhanced transformability. These data are consistent with the idea that the Ras/cAMP pathway might modulate cell-wall construction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2133
2000-09-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462133a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2133&mimeType=html&fmt=ahah

References

  1. Albright, C. F. & Robbins, P. W. ( 1990; ). The sequence and transcript heterogeneity of the yeast gene ALG1, an essential mannosyltransferase involved in N-glycosylation. J Biol Chem 265, 7042-7049.
    [Google Scholar]
  2. Arkinstall, S. J., Papasavvas, S. G. & Payton, M. A. ( 1991; ). Yeast α-mating factor receptor-linked G-protein signal transduction suppresses Ras-dependent activity. FEBS Lett 284, 123-128.[CrossRef]
    [Google Scholar]
  3. Baroni, M. D., Monti, P. & Alberghina, L. ( 1994; ). Repression of growth-regulated G1 cyclin expression by cyclic-AMP in budding yeast. Nature 371, 339-342.[CrossRef]
    [Google Scholar]
  4. Benton, B. K., Driscoll-Plump, S., Roos, J., Lennarz, W. & Cross, F. ( 1996; ). Overexpression of Saccharomyces cerevisiae G1 cyclins restores the viability of alg1 N-glycosylation mutants. Curr Genet 29, 106-113.
    [Google Scholar]
  5. Birnboim, H. C. & Doly, J. ( 1979; ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513-1523.[CrossRef]
    [Google Scholar]
  6. Blagoeva, J., Stoev, G. & Venkov, P. V. ( 1991; ). Glucan structure in a fragile mutant of Saccharomyces cerevisiae. Yeast 7, 455-461.[CrossRef]
    [Google Scholar]
  7. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. & Boeke, J. D. ( 1998; ). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132.[CrossRef]
    [Google Scholar]
  8. Broach, J. R. & Deschenes, R. J. ( 1990; ). The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res 54, 79-139.
    [Google Scholar]
  9. Broach, J., Strathern, J. & Hicks, J. ( 1979; ). Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8, 121-133.[CrossRef]
    [Google Scholar]
  10. Broach, J. R. ( 1991; ). RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet 7, 28-33.[CrossRef]
    [Google Scholar]
  11. Bullock, W. O., Fernandez, J. M. & Short, J. M. ( 1987; ). XL1-Blue: a high-efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5, 376-378.
    [Google Scholar]
  12. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. ( 1992; ). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119-122.[CrossRef]
    [Google Scholar]
  13. Cid, V. J., Duran, A., Delrey, F., Snyder, M. P., Nombela, C. & Sanchez, M. ( 1995; ). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59, 345-386.
    [Google Scholar]
  14. Costigan, C., Gehrung, S. & Snyder, M. ( 1992; ). A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol Cell Biol 12, 1162-1178.
    [Google Scholar]
  15. Cross, G. A. M. ( 1990; ). Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol 6, 1-39.[CrossRef]
    [Google Scholar]
  16. Delneri, D., Gardner, D. C., Bruschi, C. V. & Oliver, S. G. ( 1999; ). Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast 15, 1681-1689.[CrossRef]
    [Google Scholar]
  17. Dirick, L., Moll, T., Auer, H. & Nasmyth, K. ( 1992; ). A central role for SWI6 in modulating cell cycle START-specific transcription in yeast. Nature 357, 508-513.[CrossRef]
    [Google Scholar]
  18. Elliott, B. & Futcher, B. ( 1993; ). Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9, 33-42.[CrossRef]
    [Google Scholar]
  19. Englund, P. T. ( 1993; ). The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem 62, 121-138.[CrossRef]
    [Google Scholar]
  20. Garay-Arroyo, A. & Covarrubias, A. A. ( 1999; ). Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15, 879-892.[CrossRef]
    [Google Scholar]
  21. Gardner, D. C. J., Tomlin, G. C., Cele, T., Hamilton, G. A., James, C. M., Stateva, L. I. & Oliver, S. G. ( 1996; ). Physical mapping of the centromere-proximal region of chromosome IV-L defines the placement of genes USO1, MBP1, PSA1 and SLC1. Yeast 12, 411-413.[CrossRef]
    [Google Scholar]
  22. Gentzsch, M. & Tanner, W. ( 1996; ). The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15, 5752-5759.
    [Google Scholar]
  23. Gentzsch, M. & Tanner, W. ( 1997; ). Protein O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology 7, 481-486.[CrossRef]
    [Google Scholar]
  24. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. ( 1992; ). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077-1090.[CrossRef]
    [Google Scholar]
  25. Hashimoto, H., Sakakibara, Y., Yamasaki, M. & Yoda, K. ( 1997; ). Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation. J Biol Chem 272, 16308-16314.[CrossRef]
    [Google Scholar]
  26. Heery, D. M., Cannon, F. & Powell, R. ( 1990; ). A simple method for subcloning DNA fragments from gel slices. Trends Genet 6, 173.[CrossRef]
    [Google Scholar]
  27. Herscovics, A. & Orlean, P. ( 1993; ). Glycoprotein biosynthesis in yeast. FASEB J 7, 540-550.
    [Google Scholar]
  28. Hill, J., Ian, K. A., Donald, G. & Griffiths, D. E. ( 1991; ). DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19, 5791.[CrossRef]
    [Google Scholar]
  29. Innis, M. A. & Gelfand, D. H. ( 1990; ). Optimization of PCR. In PCR Protocols – A Guide to Methods and Applications , pp. 3-12. Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White. San Diego, CA: Academic Press.
  30. Irie, K., Levin, D. E., Levin, K. S., Bakase, M., Araki, H., Matsumoto, K. & Oshima, Y. ( 1993; ). MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen activated protein kinase kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13, 3076-3083.
    [Google Scholar]
  31. Ito, H., Fukuda, Y., Murata, K. & Kimara, A. ( 1983; ). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163-168.
    [Google Scholar]
  32. James, C. M., Indge, K. J. & Oliver, S. G. ( 1995; ). DNA sequence analysis of a 35 kb segment from Saccharomyces cerevisiae chromosome VII reveals 19 open reading frames including RAD54, ACE1/CUP2, PMR1, RCK1, AMS1 and CAL1/CDC43. Yeast 11, 1413-1419.[CrossRef]
    [Google Scholar]
  33. Kaiser, C., Michaelis, S. & Mitchell, A. (1994). Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Klis, F. M. ( 1994; ). Cell-wall assembly in yeast. Yeast 10, 851-869.[CrossRef]
    [Google Scholar]
  35. Kobayashi, O., Suda, H., Ohtani, T. & Sone, H. ( 1996; ). Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet 251, 707-715.
    [Google Scholar]
  36. Kopecka, M., Gabriel, M., Necas, O., Svoboda, A. & Venkov, P. V. ( 1991; ). Cell surface structures in osmotically fragile mutants of Saccharomyces cerevisiae. J Gen Microbiol 137, 1263-1270.[CrossRef]
    [Google Scholar]
  37. Kozhina, T., Stateva, L. & Venkov, P. ( 1979; ). Genetic analysis of an osmotic sensitive Saccharomyces cerevisiae mutant. Mol Gen Genet 170, 351-354.[CrossRef]
    [Google Scholar]
  38. Kukuruzinska, M. A., Bergh, M. L. E. & Jackson, B. J. ( 1987; ). Protein glycosylation in yeast. Annu Rev Biochem 56, 915-944.[CrossRef]
    [Google Scholar]
  39. Lee, K. S. & Levin, D. E. ( 1992; ). Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypasses the requirement for Saccharomyces cerevisiae protein kinase C homolog. Mol Cell Biol 12, 172-182.
    [Google Scholar]
  40. Lee, K., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K. & Levin, D. ( 1993; ). A yeast mitogen activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13, 3067-3075.
    [Google Scholar]
  41. Leidich, S. D., Kostova, Z., Latek, R. R., Costello, L. C., Drapp, D. A., Gray, W., Fassler, J. S. & Orlean, P. ( 1995; ). Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol: cloning of the GPI2 gene. J Biol Chem 270, 13029-13035.[CrossRef]
    [Google Scholar]
  42. Levin, D. E. & Bartlett-Heubusch, E. ( 1992; ). Mutants in the Saccharomyces cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116, 1221-1229.[CrossRef]
    [Google Scholar]
  43. Lussier, M., Sdicu, A. M., Camirand, A. & Bussey, H. ( 1996; ). Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family. J Biol Chem 271, 11001-11008.[CrossRef]
    [Google Scholar]
  44. Lussier, M., Sdicu, A. M., Bussereau, F., Jacquet, M. & Bussey, H. ( 1997a; ). The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. J Biol Chem 272, 15527-15531.[CrossRef]
    [Google Scholar]
  45. Lussier, M., Sdicu, A. M., Winnett, E., Vo, D. H., Sheraton, J., Dusterhoft, A., Storms, R. K. & Bussey, H. ( 1997b; ). Completion of the Saccharomyces cerevisiae genome sequence allows identification of KTR5, KTR6 and KTR7 and definition of the nine-membered KRE2/MNT1 mannosyltransferase gene family in this organism. Yeast 13, 267-274.[CrossRef]
    [Google Scholar]
  46. Lussier, M., White, A. M., Sheraton, J. & 17 other authors ( 1997; c). Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147, 435–450.
    [Google Scholar]
  47. Madden, K., Sheu, Y. J., Baetz, K., Andrews, B. & Snyder, M. ( 1997; ). SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275, 1781-1784.[CrossRef]
    [Google Scholar]
  48. Maerkisch, U., Reuter, G., Stateva, L. I. & Venkov, P. ( 1983; ). Mannan structure analysis of the fragile Saccharomyces cerevisiae mutant VY1160. Int J Biochem 15, 1373-1377.[CrossRef]
    [Google Scholar]
  49. Marini, N. J., Meldrum, E., Buehrer, B., Hubberstey, A. V., Stone, D. E., Traynor-Kaplan, A. & Reed, S. I. ( 1996; ). A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START. EMBO J 15, 3040-3052.
    [Google Scholar]
  50. Martinez-Pastor, M. T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. & Estruch, F. ( 1996; ). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227-2235.
    [Google Scholar]
  51. Matsumoto, K., Uno, I., Toh-e, A., Ishikawa, T. & Oshima, Y. ( 1982; ). Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants capable of utilizing it as an adenosine source. J Bacteriol 150, 277-285.
    [Google Scholar]
  52. Mazzoni, C., Zarzov, P., Rambourg, A. & Mann, C. ( 1993; ). The SLT2/MPK1 MAP kinase homolog is involved in polarised growth in Saccharomyces cerevisiae. J Cell Biol 123, 1821-1833.[CrossRef]
    [Google Scholar]
  53. Molina, M., Martin, H., Sanchez, M. & Nombela, C. ( 1998; ). MAP kinase-mediated signal transduction pathways. In Yeast Gene Analysis: Methods in Microbiology , pp. 375-393. Edited by A. J. P. Brown & M. F. Tuite. San Diego, CA: Academic Press.
  54. Mosch, H. U., Kubler, E., Krappmann, S., Fink, G. R. & Braus, G. H. ( 1999; ). Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10, 1325-1335.[CrossRef]
    [Google Scholar]
  55. Nakayama, K., Feng, Y., Tanaka, A. & Jigami, Y. ( 1998; ). The involvement of mnn4 and mnn6 mutations in mannosylphosphorylation of O-linked oligosaccharide in yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1425, 255-262.[CrossRef]
    [Google Scholar]
  56. Nikawa, J., Sass, P. & Wigler, M. ( 1987; ). Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol 7, 3629-3636.
    [Google Scholar]
  57. Norbeck, J. & Blomberg, A. ( 2000; ). The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16, 121-137.[CrossRef]
    [Google Scholar]
  58. Odani, T., Shimma, Y., Tanaka, A. & Jigami, Y. ( 1996; ). Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6, 805-810.[CrossRef]
    [Google Scholar]
  59. Odani, T., Shimma, Y., Wang, X. H. & Jigami, Y. ( 1997; ). Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420, 186-190.[CrossRef]
    [Google Scholar]
  60. Orlean, P. ( 1990; ). Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O-mannosylation, and N-glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol 10, 5796-5805.
    [Google Scholar]
  61. Orlean, P. ( 1997; ). Biogenesis of yeast wall and surface components. In The Molecular Biology of the Yeast Saccharomyces , pp. 229-362. Edited by J. R. Pringle, J. R. Broach & E. W. Jones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  62. Orlean, P., Albright, C. & Robbins, P. W. ( 1988; ). Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem 263, 17499-17507.
    [Google Scholar]
  63. Pan, X. & Heitman, J. ( 1999; ). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19, 4874-4887.
    [Google Scholar]
  64. Paravicini, G., Cooper, M., Friedli, L., Smith, D. J., Carpenter, J. L., Klig, L. & Payton, M. A. ( 1992; ). The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol Cell Biol 12, 4896-4905.
    [Google Scholar]
  65. Parry, J. M., Davies, P. J. & Evans, W. E. ( 1976; ). The effects of ‘cell age’ upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae. Mol Gen Genet 146, 27-35.[CrossRef]
    [Google Scholar]
  66. Philipova, D. (1985). Transformation of fragile mutants of S. cerevisiae. PhD thesis, Bulgarian Academy of Science.
  67. Ram, A. F., Wolters, A., Ten Hoopen, R. & Klis, F. M. ( 1994; ). A new approach for isolating cell-wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10, 1019-1030.[CrossRef]
    [Google Scholar]
  68. Rose, M. D., Novick, P., Thomas, J. H., Botstein, D. & Fink, G. ( 1987; ). A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60, 237-243.[CrossRef]
    [Google Scholar]
  69. Rupp, S., Summers, E., Lo, H. J., Madhani, H. & Fink, G. ( 1999; ). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18, 1257-1269.[CrossRef]
    [Google Scholar]
  70. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  71. Sasaki, T., Toh-e, A. & Kikuchi, Y ( 2000; ). Extragenic suppressors that rescue defects in the heat stress response of the budding yeast mutant tom1. Mol Gen Genet 262, 940-948.[CrossRef]
    [Google Scholar]
  72. Sass, P., Field, J., Nikawa, J., Toda, T. & Wigler, M. ( 1986; ). Cloning and characterisation of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83, 9303-9307.[CrossRef]
    [Google Scholar]
  73. Schmitt, A. P. & McEntee, K. ( 1996; ). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93, 5777-5782.[CrossRef]
    [Google Scholar]
  74. Sherman, F., Fink, G. R. & Hicks, J. B. (1986). Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  75. Shimma, Y., Nishikawa, A., bin Kassim, B., Eto, A. & Jigami, Y. ( 1997; ). A defect in GTP synthesis affects mannose outer chain elongation in Saccharomyces cerevisiae. Mol Gen Genet 256, 469-480.[CrossRef]
    [Google Scholar]
  76. Sikorski, R. S. & Hieter, P. ( 1989; ). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
    [Google Scholar]
  77. Stateva, L. I., Oliver, S. G., Trueman, L. J. & Venkov, P. V. ( 1991; ). Cloning and characterisation of a gene which determines osmotic stability in Saccharomyces cerevisiae. Mol Cell Biol 11, 4235-4243.
    [Google Scholar]
  78. Tanner, W. & Lehle, L. ( 1987; ). Protein glycosylation in yeast. Biochim Biophys Acta 906, 81-99.[CrossRef]
    [Google Scholar]
  79. Thevelein, J. M. ( 1994; ). Signal transduction in yeast. Yeast 10, 1753-1790.[CrossRef]
    [Google Scholar]
  80. Thevelein, J. M. & de Winde, J. H. ( 1999; ). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33, 904-918.[CrossRef]
    [Google Scholar]
  81. Toda, T., Cameron, S., Sass, P. & Wigler, M. ( 1987a; ). Three different genes in the yeast Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50, 277-287.[CrossRef]
    [Google Scholar]
  82. Toda, T., Cameron, S., Sass, P., Zoller, M., Scott, J. D., McMullen, B., Hurwitz, M., Krebs, E. G. & Wigler, M. ( 1987b; ). Cloning and characterisation of BCY1, a locus encoding the regulatory subunit of the cAMP-dependent protein kinase in yeast. Mol Cell Biol 7, 1371-1377.
    [Google Scholar]
  83. Tokiwa, G., Tyers, M., Volpe, T. & Futcher, B. ( 1994; ). Inhibition of G1 cyclin activity by the RAS/cAMP pathway in yeast. Nature 371, 342-345.[CrossRef]
    [Google Scholar]
  84. Trevillyan, J. M. & Pall, M. L. ( 1979; ). Control of cAMP levels by depolarising agents in fungi. J Bacteriol 138, 397-403.
    [Google Scholar]
  85. Varela, J. C., Praekelt, U. M., Meacock, P. A., Planta, R. J. & Mager, W. H. ( 1995; ). The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15, 6232-6245.
    [Google Scholar]
  86. Venkov, P. V., Hadjiolov, A. A., Battaner, E. & Schlessinger, D. ( 1974; ). Saccharomyces cerevisiae sorbitol dependent fragile mutants. Biochem Biophys Res Commun 56, 559-604.
    [Google Scholar]
  87. Venkov, P. V., Milchev, G. I. & Hadjiolov, A. A. ( 1975; ). Rifampicin susceptibility of ribonucleic acid synthesis in a fragile Saccharomyces cerevisiae mutant. Antimicrob Agents Chemother 8, 627-632.[CrossRef]
    [Google Scholar]
  88. Waltschewa, L. W., Venkov, P. V., Stoyanova, B. B. & Hadjiolov, A. A. ( 1976; ). Degradation of ribosomal precursor and polyadenylic acid-containing ribonucleic acids in Saccharomyces cerevisiae caused by actinomycin D. Arch Biochem Biophys 176, 630-637.[CrossRef]
    [Google Scholar]
  89. Wang, X. H., Nakayama, K., Shimma, Y., Tanaka, A. & Jigami, Y ( 1997; ). MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae. J Biol Chem 272, 18117-18124.[CrossRef]
    [Google Scholar]
  90. Ward, A. C. ( 1990; ). Single step purification of shuttle vectors from yeast for high frequency back transformation into Escherichia coli. Nucleic Acids Res 18, 5319.[CrossRef]
    [Google Scholar]
  91. Werner-Washburne, M., Braun, E., Johnston, G. C. & Singer, R. A. ( 1993; ). Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57, 383-401.
    [Google Scholar]
  92. Wilson, R. B. & Tatchell, K. ( 1988; ). SRA5 encodes the low K m cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol 8, 505-510.
    [Google Scholar]
  93. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
  94. Yip, C. L., Welch, S. K., Klebl, F., Gilbert, T., Seidel, P., Grant, F. J., O’Hara, P. J. & MacKay, V. L. ( 1994; ). Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA 91, 2723-2727.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2133
Loading
/content/journal/micro/10.1099/00221287-146-9-2133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error