1887

Abstract

The protein kinase C () pathway is essential for maintaining cell integrity in yeast. Here it is shown that various forms of cell wall damage result in activation of the downstream MAP kinase Slt2/Mpk1. Several cell wall mutants displayed enhanced expression, a known output of Slt2 activation. A similar response was obtained with wild-type cells grown in the presence of the cell wall perturbants Calcofluor white and Zymolyase. Upregulation of in response to sublethal concentrations of these agents fully depended on the presence of Slt2. The same cell wall stress conditions resulted in dual threonine and tyrosine phosphorylation of Slt2. Both Slt2 phosphorylation and induction could be largely prevented by providing osmotic support to the plasma membrane. Interestingly, Slt2 phosphorylation in response to cell wall damage required the putative plasma-membrane-located sensor Mid2 but not Hcs77/Wsc1. Finally, cell wall perturbation gave rise to cells with increased resistance to glucanase digestion and heat shock. These responses depended on the presence of Slt2. These results indicate that weakening of the cell wall activates the Slt2/Mpk1 MAP kinase pathway and results in compensatory changes in the cell wall.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2121
2000-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462121a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2121&mimeType=html&fmt=ahah

References

  1. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. ( 1993; ). A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21, 3329-3330.[CrossRef]
    [Google Scholar]
  2. Berben, G., Dumont, J., Gilliquet, V., Bolle, P. A. & Hilger, F. ( 1991; ). The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7, 475-477.[CrossRef]
    [Google Scholar]
  3. Bickle, M., Delley, P.-A., Schmidt, A. & Hall, M. N. ( 1998; ). Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17, 2235-2245.[CrossRef]
    [Google Scholar]
  4. Boone, C., Sommer, S. S., Hansel, A. & Bussey, H. ( 1990; ). Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol 110, 1833-1843.[CrossRef]
    [Google Scholar]
  5. Brown, J. L. & Bussey, H. ( 1993; ). The yeast KRE9 gene encodes an O glycoprotein involved in cell surface beta-glucan assembly. Mol Cell Biol 13, 6346-6356.
    [Google Scholar]
  6. Buehrer, B. M. & Errede, B. ( 1997; ). Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol Cell Biol 17, 6517-6525.
    [Google Scholar]
  7. Cobb, M. H. & Goldsmith, E. J. ( 1995; ). How MAP kinases are regulated. J Biol Chem 270, 14843-14846.[CrossRef]
    [Google Scholar]
  8. Dallies, N., Francois, J. & Pacquet, V. ( 1998; ). A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14, 1297-1306.[CrossRef]
    [Google Scholar]
  9. Delley, P.-A. & Hall, M. ( 1999; ). Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J Cell Biol 147, 1-12.[CrossRef]
    [Google Scholar]
  10. De Nobel, H., Klis, F. M., Priem, J., Munnik, T. & Van den Ende, H. ( 1990; ). The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6, 491-499.[CrossRef]
    [Google Scholar]
  11. Donzeau, M., Bourdineaud, J.-P. & Lauquin, G. J.-M. ( 1996; ). Regulation by low temperatures and anaerobiosis of a yeast gene specifying a putative GPI-anchored plasma membrane. Mol Microbiol 20, 449-459.[CrossRef]
    [Google Scholar]
  12. Garrett-Engele, P., Moilanen, B. & Cyert, M. ( 1995; ). Calcineurin, the yeast Ca2+/Calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+-ATPase. Mol Cell Biol 15, 4103-4114.
    [Google Scholar]
  13. Gray, J. V., Ogas, J. P., Kamada, Y., Stone, M., Levin, D. E. & Herskowitz, I. ( 1997; ). A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16, 4924-4937.[CrossRef]
    [Google Scholar]
  14. Guarente, L. ( 1983; ). Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101, 181-191.
    [Google Scholar]
  15. Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K. ( 1998; ). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62, 1264-1300.
    [Google Scholar]
  16. Heinisch, J. J., Lorberg, A., Schmitz, H.-P. & Jacoby, J. J. ( 1999; ). The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisae. Mol Microbiol 32, 671-680.[CrossRef]
    [Google Scholar]
  17. Helliwell, S. B., Schmidt, A., Ohya, Y. & Hall, M. N. ( 1998; ). The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol 8, 1211-1214.[CrossRef]
    [Google Scholar]
  18. Igual, J. C., Johnson, A. L. & Johnston, L. H. ( 1996; ). Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15, 5001-5013.
    [Google Scholar]
  19. Jacoby, J. J., Nilius, S. M. & Heinisch, J. J. ( 1998; ). A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol Gen Genet 258, 148-155.[CrossRef]
    [Google Scholar]
  20. Jung, U. S. & Levin, D. E. ( 1999; ). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Micobiol 34, 1049-1057.[CrossRef]
    [Google Scholar]
  21. Kamada, Y., Jung, U. S., Piotrowski, J. & Levin, D. E. ( 1995; ). The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9, 1559-1571.[CrossRef]
    [Google Scholar]
  22. Kamada, Y., Qadota, H., Python, C. P., Anraku, Y., Ohya, Y. & Levin, D. E. ( 1996; ). Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem 271, 9193-9196.[CrossRef]
    [Google Scholar]
  23. Kapteyn, J. C., Ram, A. F. J., Groos, E. M., Kollar, R., Montijn, R. C., Van den Ende, H., Llobel, A., Cabib, E. & Klis, F. M. ( 1997; ). Altered extent of cross-linking of β1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β1,3-glucan content. J Bacteriol 179, 6279-6284.
    [Google Scholar]
  24. Kapteyn, J. C., Van den Ende, H. & Klis, F. M. ( 1999a; ). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426, 373-383.[CrossRef]
    [Google Scholar]
  25. Kapteyn, J. C., Van Egmond, P., Sievi, E., Van den Ende, H., Makarow, M. & Klis, F. M. ( 1999b; ). The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and β1,6-glucan-deficient mutants. Mol Microbiol 31, 1835-1844.[CrossRef]
    [Google Scholar]
  26. Ketela, T., Green, R. & Bussey, H. ( 1999; ). Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 181, 3330-3340.
    [Google Scholar]
  27. Lamb, C. J., Lawton, M. A., Dron, M. & Dixon, R. A. ( 1989; ). Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56, 215-224.[CrossRef]
    [Google Scholar]
  28. Lee, K. S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K. & Levin, D. E. ( 1993; ). A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13, 3067-3075.
    [Google Scholar]
  29. Levin, D. E., Bowers, B., Chen, C. Y., Kamada, Y. & Watanabe, M. ( 1994; ). Dissecting the protein kinase C/MAP kinase signalling pathway of Saccharomyces cerevisiae. Cell Mol Biol Res 40, 229-239.
    [Google Scholar]
  30. Lorito, M., Woo, S. L., Garcia Fernandez, I. & 10 other authors ( 1998; ). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95, 7860–7865.[CrossRef]
    [Google Scholar]
  31. Marguet, D. & Lauquin, G. J.-M. ( 1986; ). The yeast SRP gene: positive modulation by glucose of its transcriptional expression. Biochem Biophys Res Commun 138, 297-303.[CrossRef]
    [Google Scholar]
  32. Martin, H., Arroyo, J., Sanchez, M., Molina, M. & Nombela, C. ( 1993; ). Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 °C. Mol Gen Genet 241, 177-184.
    [Google Scholar]
  33. Martin, H., Rodriguez-Pachon, J. M., Ruiz, C., Nombela, C. & Molina, M. ( 2000; ). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511-1519.[CrossRef]
    [Google Scholar]
  34. Mazur, P., Morin, N., Baginsky, W., El-Sherbeini, M., Clemas, J. A., Nielsen, J. B. & Foor, F. ( 1995; ). Differential expression and function of two homologous subunits of yeast 1,3-β-d-glucan synthase. Mol Cell Biol 15, 5671-5681.
    [Google Scholar]
  35. Mellor, H. & Parker, P. J. ( 1998; ). The extended protein kinase C superfamily. Biochem J 332, 281-292.
    [Google Scholar]
  36. Nonaka, H., Tanaka, K., Hirano, H., Fujiwara, T., Kohno, H., Umikawa, M., Mino, A. & Takai, Y. ( 1995; ). A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 14, 5931-5938.
    [Google Scholar]
  37. Popolo, L. & Vai, M. ( 1999; ). The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1426, 385-400.[CrossRef]
    [Google Scholar]
  38. Popolo, L., Vai, M., Gatti, E., Porello, S., Bonafante, P., Balestrini, R. & Alberghina, L. ( 1993; ). Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae glycosylphosphatidylinositol-anchored protein gp115 in morphogenesis and cell separation. J Bacteriol 175, 1879-1885.
    [Google Scholar]
  39. Popolo, L., Gilardelli, D., Bonafante, P. & Vai, M. ( 1997; ). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J Bacteriol 179, 463-469.
    [Google Scholar]
  40. Pringle, J. R., Preston, R. A., Adams, A. E. M., Stearns, T., Drubin, D. G., Haarer, B. K. & Jones, E. W. ( 1989; ). Fluorescence microscopy methods for yeast. Methods Cell Biol 31, 357-435.
    [Google Scholar]
  41. Rajavel, M., Philip, B., Buehrer, B. M., Errede, B. & Levin, D. E. ( 1999; ). Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19, 3969-3976.
    [Google Scholar]
  42. Ram, A. F. J., Wolters, A., Ten Hoopen, R. & Klis, F. M. ( 1994; ). A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by hypersensitivity to Calcofluor white. Yeast 10, 1019-1030.[CrossRef]
    [Google Scholar]
  43. Ram, A. F. J., Brekelmans, S. S. C., Oehlen, L. J. W. M. & Klis, F. M. ( 1995; ). Identification of two cell cycle regulated genes affecting the β-1,3-glucan content of cell wall in Saccharomyces cerevisiae. FEBS Lett 358, 165-170.[CrossRef]
    [Google Scholar]
  44. Ram, A. F. J., Kapteyn, J. C., Montijn, R. C., Caro, L. H. P., Douwes, J. E., Baginsky, W., Mazur, P., Van den Ende, H. & Klis, F. M. ( 1998; ). Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β-1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180, 1418-1424.
    [Google Scholar]
  45. Roemer, T., Paravicini, G., Payton, M. A. & Bussey, H. ( 1994; ). Characterization of the yeast (1-6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell Biol 127, 567-579.[CrossRef]
    [Google Scholar]
  46. Roncero, C. & Duran, A. ( 1985; ). Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163, 1180-1185.
    [Google Scholar]
  47. Smits, G. J., Kapteyn, J. C., Van den Ende, H. & Klis, F. M. ( 1999; ). Cell wall dynamics in yeast. Curr Opin Microbiol 2, 348-352.[CrossRef]
    [Google Scholar]
  48. Torres, L., Martin, H., Garcia-Saez, M. I., Arroyo, J., Molina, M., Sanchez, M. & Nombela, C. ( 1991; ). A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol Microbiol 5, 2845-2854.[CrossRef]
    [Google Scholar]
  49. Turchini, A., Ferrario, L. & Popolo, L. ( 2000; ). Increase of external osmolarity reduces morphogenetic defects and accumulation of chitin in a gas1 mutant of Saccharomyces cerevisiae. J Bacteriol 182, 1167-1171.[CrossRef]
    [Google Scholar]
  50. Verna, J., Lodder, A., Lee, K., Vagts, A. & Ballester, R. ( 1997; ). A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94, 13804-13809.[CrossRef]
    [Google Scholar]
  51. Zhao, C., Jung, U. S., Garrett-Engele, P., Roe, T., Cyert, M. S. & Levin, D. E. ( 1998; ). Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol 18, 1013-1022.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2121
Loading
/content/journal/micro/10.1099/00221287-146-9-2121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error