1887

Abstract

The pectinolytic enterobacterium 3937 causes a systemic disease in its natural host, the African violet ( ). It produces two structurally unrelated siderophores, chrysobactin and achromobactin. Chrysobactin makes a large contribution to invasive growth of the bacterium in its host. Insertion mutants of a chrysobactin-defective strain were constructed and screened on the universal CAS-agar medium used for siderophore detection. A set of mutants affected in the production of achromobactin were identified. This paper describes a mutant affected in the transport of all the ferrisiderophores used by the bacterium as iron sources. Molecular analysis revealed that the insertion mutation disrupts the gene. The predicted TonB protein has a molecular mass of 27600 Da and shares 20–58% identity with the TonB proteins from 20 other bacterial species. The pathogenicity of the mutant was assessed by inoculation of African violets. The impairment in the spread of symptoms was similar in the mutant to that in chrysobactin-defective mutants. However, the pectinolytic activity, the major pathogenicity determinant in , appeared to be stimulated twofold in the mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-2051
2000-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1462051a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-2051&mimeType=html&fmt=ahah

References

  1. Allen L. N., Hanson R. S. 1985; Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161:955–962
    [Google Scholar]
  2. Anton M., Heller K. J. 1991; Functional analysis of a C-terminal altered TonB protein of Escherichia coli. Gene 105:23–29 [CrossRef]
    [Google Scholar]
  3. Bachmann B. J. 1987 Derivations and Genotypes of Some Mutant Derivatives of Escherichia coli K12 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Barras F., Van Gijsegem F., Chatterjee A. K. 1994; Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201–234 [CrossRef]
    [Google Scholar]
  5. Braun V. 1995; Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16:295–307 [CrossRef]
    [Google Scholar]
  6. Braun V., Gaisser S., Herrmann C., Kampfenkel K., Killmann H., Traub I. 1996; Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity. J Bacteriol 178:2836–2845
    [Google Scholar]
  7. Bruske A. K., Anton M., Heller K. J. 1993; Cloning and sequencing of the Klebsiella pneunoniae tonB gene and characterization of Escherichia coli–K. pneunoniae TonB hybrid proteins. Gene 131:9–16 [CrossRef]
    [Google Scholar]
  8. Castilho B. A., Olfson P., Casadaban M. J. 1984; Plasmid insertion mutagenesis and lac gene fusion with mini-Mu bacteriophage transposons. J Bacteriol 158:488–495
    [Google Scholar]
  9. Enard C., Diolez A., Expert D. 1988; Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system. J Bacteriol 170:2419–2426
    [Google Scholar]
  10. Expert D., Toussaint A. 1985; Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity. J Bacteriol 163:221–227
    [Google Scholar]
  11. Expert D., Sauvage C., Neilands J. B. 1992; Negative transcriptional control of iron transport in Erwinia chrysanthemi involves an iron-responsive two factor system. Mol Microbiol 6:2009–2017 [CrossRef]
    [Google Scholar]
  12. Expert D., Enard C., Masclaux C. 1996; The role of iron in plant host–pathogen interactions. Trends Microbiol 4:232–237 [CrossRef]
    [Google Scholar]
  13. Faelen M. 1987 In Phage Mu pp. 309–316Edited by Symonds N., Toussaint A., Van de Putte P., Howe M. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Figurski D. H., Helinski D. R. 1979; Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  15. Franza T., Expert D. 1991; The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. J Bacteriol 173:6874–6881
    [Google Scholar]
  16. Franza T., Enard C., Van Gijsegem F., Expert D. 1991; Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterisation of a gene cluster involved in uptake and biosynthetic pathway. Mol Microbiol 5:1319–1329 [CrossRef]
    [Google Scholar]
  17. Franza T., Sauvage C., Expert D. 1999; Iron regulation and pathogenicity in Erwinia chrysanthemi strain 3937: role of the Fur repressor protein. Mol Plant–Microbe Interact 12:119–128 [CrossRef]
    [Google Scholar]
  18. Gaisser S., Braun V. 1991; The tonB gene of Serratia marcescens: sequence, activity and partial complementation of Escherichia coli tonB mutants. Mol Microbiol 5:2777–2787 [CrossRef]
    [Google Scholar]
  19. Hannavy K., Barr G. C., Dorman C. J.7 other authors 1990; TonB protein of Salmonella typhimurium. A model for signaling transduction between membranes. J Mol Biol 216:897–910 [CrossRef]
    [Google Scholar]
  20. Hantke K., Braun V. 1978; Functional interaction of the tonA/tonB receptor system in Escherichia coli. J Bacteriol 135:190–197
    [Google Scholar]
  21. Higgs P. I., Myers P. S., Postle K. 1998; Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J Bacteriol 180:6031–6038
    [Google Scholar]
  22. Howe M. M. 1973; Prophage deletion mapping of bacteriophage Mu-1. Virology 54:93–101 [CrossRef]
    [Google Scholar]
  23. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. 1985; Lactose metabolism in Erwinia chrysanthemi. J Bacteriol 162:248–255
    [Google Scholar]
  24. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S. 1996; Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50:213–257 [CrossRef]
    [Google Scholar]
  25. Karlsson M., Hannavy K., Higgins C. F. 1993a; A sequence-specific function for the N-terminal signal-like sequence of the TonB protein. Mol Microbiol 8:379–388 [CrossRef]
    [Google Scholar]
  26. Karlsson M., Hannavy K., Higgins C. F. 1993b; ExbB acts as a chaperone-like protein to stabilize TonB in the cytoplasm. Mol Microbiol 8:389–396 [CrossRef]
    [Google Scholar]
  27. Kingsley R. A., Reissbrodt R., Rabsch W.7 other authors 1999; Ferrioxamine-mediated iron(III) utilization by Salmonella enterica. Appl Environ Microbiol 65:1610–1618
    [Google Scholar]
  28. Koebnik R. 1993; The molecular interaction between components of the TonB-ExbBD-dependent and of the TolQRA-dependent uptake systems. Mol Microbiol 9:219 [CrossRef]
    [Google Scholar]
  29. Koebnik R., Bäumler A. J., Heesemann J., Braun V., Hantke K. 1993; The TonB protein of Yersinia enterocolitica and its interactions with TonB-box proteins. Mol Gen Genet 237:152–160
    [Google Scholar]
  30. Kotoujansky A., Lemattre M., Boitard P. 1982; Utilization of a thermosensitive episome bearing transposon Tn10 to isolate Hfr donor strains of Erwinia carotovora subsp. chrysanthemi. J Bacteriol 150:122–131
    [Google Scholar]
  31. Larsen R. A., Wood G. E., Postle K. 1993; The conserved proline-rich motif is not essential for energy transduction by Escherichia coli TonB protein. Mol Microbiol 10:943–953 [CrossRef]
    [Google Scholar]
  32. Larsen R. A., Foster-Hartnett D., McIntosh M. A., Postle K. 1997; Regions of Escherichia coli TonB and FepA proteins essential for in vivo physical interactions. J Bacteriol 179:3213–3221
    [Google Scholar]
  33. Larsen R. A., Thomas M. G., Postle K. 1999; Protonmotive force, ExbB and ligand-bound FepA drive conformational changes in TonB. Mol Microbiol 31:1809–1824 [CrossRef]
    [Google Scholar]
  34. Lojkowska E., Masclaux C., Boccara M., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N. 1995; Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Mol Microbiol 16:1183–1195 [CrossRef]
    [Google Scholar]
  35. Mahé B., Masclaux C., Rauscher L., Enard C., Expert D. 1995; Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family. Mol Microbiol 18:33–43 [CrossRef]
    [Google Scholar]
  36. Masclaux C., Expert D. 1995; Signalling potential of iron in plant–microbe interactions: the pathogenic switch of iron transport in Erwinia chrysanthemi. Plant J 7:121–128 [CrossRef]
    [Google Scholar]
  37. Miller J. F. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Moeck G. S., Coulton W. 1998; TonB-dependent iron acquisition: mecanisms of siderophore-mediated active transport. Mol Microbiol 28:675–681
    [Google Scholar]
  39. Münzinger M., Budzikiewicz H., Expert D., Enard C., Meyer J.-M. 2000; Achromobactin, a new citrate siderophore of Erwinia chrysanthemi. Z Naturforsch 55C:328–332
    [Google Scholar]
  40. Murray N. E., Brammar W. J., Murray K. 1977; Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150:53–61 [CrossRef]
    [Google Scholar]
  41. Persmark M., Expert D., Neilands J. B. 1989; Isolation, characterisation, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. J Biol Chem 264:3187–3193
    [Google Scholar]
  42. Pettis G. S., Brickman T. J., McIntosh M. A. 1988; Transcriptional mapping and nucleotide sequence of the Escherichia coli fepA–fes enterobactin region. J Biol Chem 263:18857–18863
    [Google Scholar]
  43. Postle K. 1999; Active transport by customized β-barrels. Nature Struct Biol 6:3–6 [CrossRef]
    [Google Scholar]
  44. Postle K., Good R. F. 1985; A bidirectional Rho-independent transcription terminator between the E. coli tonB gene and an opposing gene. Cell 41:577–585 [CrossRef]
    [Google Scholar]
  45. Postle K., Skare J. T. 1988; Escherichia coli TonB is exported from the cytoplasm without proteolytic cleavage of its amino terminus. J Biol Chem 263:11000–11007
    [Google Scholar]
  46. Pugsley A. P., Reeves P. 1976; Characterization of group B colicin-resitant mutants of Escherichia coli K-12: colicin resistance and the role of enterochelin. J Bacteriol 127:218–228
    [Google Scholar]
  47. Résibois A., Colet M., Faelen M., Schoonejans E., Toussaint A. 1984; PhiEC-2, a new generalized transducing phage of Erwinia chrysanthemi. Virology 137:102–112 [CrossRef]
    [Google Scholar]
  48. Rogers H. J. 1973; Iron-binding catechols and virulence in Escherichia coli. Infect Immun 7:445–456
    [Google Scholar]
  49. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  50. Shevchik V. E., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N. 1997; Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family. J Bacteriol 179:7321–7330
    [Google Scholar]
  51. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalities and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  52. Traub I., Gaisser S., Braun V. 1993; Activity domains of the TonB protein. Mol Microbiol 8:409–423 [CrossRef]
    [Google Scholar]
  53. Van Gijsegem F., Toussaint A. 1982; Chromosome transfer and R-prime formation by an RP4:mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pnemoniae and Proteus mirabilis. Plasmid 7:30–44 [CrossRef]
    [Google Scholar]
  54. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-2051
Loading
/content/journal/micro/10.1099/00221287-146-8-2051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error