1887

Abstract

The pattern of expression of the genes involved in the utilization of aryl β-glucosides such as arbutin and salicin is different in the genus compared to . The results presented here indicate that the homologue of the cryptic operon of is conserved in and is the primary system involved in β-glucoside utilization in the organism. The organization of the genes in is similar to that of ; however there are three major differences in terms of their pattern of expression. (i) The gene, encoding phospho-β-glucosidase B, is insertionally inactivated in . As a result, mutational activation of the silent promoter confers an Arbutin-positive (Arb) phenotype to the cells in a single step; however, acquiring a Salicin-positive (Sal) phenotype requires the reversion or suppression of the mutation in addition. (ii) Unlike in , a majority of the activating mutations (conferring the Arb phenotype) map within the unlinked locus, whereas activation of the operon under the same conditions is predominantly due to insertions within the locus. (iii) Although the promoter is silent in the wild-type strain of (as in the case of , transcriptional and functional analyses indicated a higher basal level of transcription of the downstream genes. This was correlated with a 1 bp deletion within the putative Rho-independent terminator present in the leader sequence preceding the homologue of the gene. The possible evolutionary implications of these differences for the maintenance of the genes in the cryptic state are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-2039
2000-08-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1462039a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-2039&mimeType=html&fmt=ahah

References

  1. Amster-Choder, O. & Wright, A. ( 1993; ). Transcriptional regulation of the bgl operon of Escherichia coli involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator. J Cell Biochem 51, 83-90.[CrossRef]
    [Google Scholar]
  2. Caramel, A. & Schentz, K. ( 1998; ). Lac and lambda repressors relieve silencing of the Escherichia coli bgl promoter: activation by alteration of a repressing nucleoprotein complex. J Mol Biol 284, 875-883.[CrossRef]
    [Google Scholar]
  3. Defez, R. & DeFelice, M. ( 1981; ). Cryptic operon for β-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Genetics 97, 11-25.
    [Google Scholar]
  4. DiNardo, S., Voelkel, K. A., Sternglanz, R., Reynolds, A. E. & Wright, A. ( 1982; ). Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31, 43-51.[CrossRef]
    [Google Scholar]
  5. Falkow, S. & Mekalanos, J. ( 1990; ). The enteric bacilli and vibrios. In Microbiology, pp. 567-587. Edited by B. D. Davis, R. Dulbecco, H. N. Eisen & H. S. Ginsberg. Philadelphia: Lippincott.
  6. Fox, F. C. & Wilson, G. ( 1967; ). The role of a phospho-enol-pyruvate-dependent kinase system in β-glucoside catabolism in Escherichia coli. Proc Natl Acad Sci USA 59, 988-995.
    [Google Scholar]
  7. Giel, M., Desnoyer, M. & Lopilato, J. ( 1996; ). A mutation in a new gene, bglJ, activates the bgl operon in Escherichia coli K12. Genetics 143, 627-635.
    [Google Scholar]
  8. Goransson, M., Sonden, B., Nilsson, P., Dagberg, B., Forsman, K., Emanuelsson, K. & Uhlin, B. E. ( 1990; ). Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 344, 682-685.[CrossRef]
    [Google Scholar]
  9. Hall, B. G. ( 1998; ). Activation of the bgl operon by adaptive mutation. Mol Biol Evol 15, 1-5.[CrossRef]
    [Google Scholar]
  10. Hall, B. G. & Xu, L. ( 1992; ). Nucleotide sequence, function, activation and evolution of the cryptic asc operon of Escherichia coli K12. Mol Biol Evol 9, 688-706.
    [Google Scholar]
  11. Keyhani, N. O. & Roseman, S. ( 1997; ). Wild type Escherichia coli grows on the chitin disaccharide N,N′-diacetylchitobiose by expressing the cel operon. Proc Natl Acad Sci USA 94, 14367-14371.[CrossRef]
    [Google Scholar]
  12. Khan, N. O. & Isaacson, R. E. ( 1998; ). In vivo expression of the β-glucoside (bgl) operon of Escherichia coli occurs in mouse liver. J Bacteriol 180, 4746-4749.
    [Google Scholar]
  13. Kharat, A. S. & Mahadevan, S. ( 1999; ). Plasmid-mediated suppression of the mutational activation of the bgl operon of Shigella sonnei. Acta Biochim Polon 46, 853-861.
    [Google Scholar]
  14. Kricker, M. & Hall, B. G. ( 1984; ). Directed evolution of cellobiose utilisation in Escherichia coli K-12. Mol Biol Evol 1, 171-182.
    [Google Scholar]
  15. Kricker, M. & Hall, B. G. ( 1987; ). Biochemical genetics of the cryptic gene system for cellobiose utilisation in Escherichia coli K12. Genetics 115, 419-429.
    [Google Scholar]
  16. Lawrence, J. G., Ochaman, H. & Hartl, D. L. ( 1992; ). The evolution of insertion sequences within enteric bacteria. Genetics 131, 505-513.
    [Google Scholar]
  17. Lopilato, J. & Wright, A. ( 1990; ). Mechanism of activation of the cryptic bgl operon of Escherichia coli K12. In The Bacterial Chromosome, pp. 435-444. Edited by C. Drlica & M. Riley. Washington, DC: American Society for Microbiology.
  18. Mahadevan, S. ( 1997; ). The BglG group of antiterminators: a growing family of bacterial regulators. J Biosci 22, 505-513.[CrossRef]
    [Google Scholar]
  19. Mahadevan, S. & Wright, A. ( 1987; ). A bacterial gene involved in transcription antitermination: regulation at a Rho-independent terminator in the bgl operon of Escherichia coli. Cell 50, 485-494.[CrossRef]
    [Google Scholar]
  20. Mahadevan, S., Reynolds, A. E. & Wright, A. ( 1987; ). Positive and negative regulation of the bgl operon in Escherichia coli. J Bacteriol 169, 2570-2578.
    [Google Scholar]
  21. Mukerji, M. & Mahadevan, S. ( 1997; ). Characterisation of the negative elements involved in silencing the bgl operon of Escherichia coli: possible roles for DNA gyrase, H-NS, and CRP-cAMP in regulation. Mol Microbiol 24, 617-627.[CrossRef]
    [Google Scholar]
  22. Owen, R. J. & Borman, P. ( 1987; ). A rapid biochemical method for purifying high molecular weight bacterial chromosomal DNA for restriction enzyme analysis. Nucleic Acid Res 15, 3631.[CrossRef]
    [Google Scholar]
  23. Parker, L. L. & Hall, B. G. ( 1988; ). A fourth Escherichia coli gene system with the potential to evolve β-glucoside utilisation. Genetics 119, 485-490.
    [Google Scholar]
  24. Parker, L. L., Betts, P. W. & Hall, B. G. ( 1988; ). Activation of a cryptic gene by excision of DNA fragment. J Bacteriol 170, 218-222.
    [Google Scholar]
  25. Prasad, I. & Schaefler, S. ( 1974; ). Regulation of the β-glucoside system in Escherichia coli K12. J Bacteriol 120, 638-650.
    [Google Scholar]
  26. Prasad, I., Young, B. & Schaefler, S. ( 1973; ). Genetic determination of the constitutive biosynthesis of phospho-β-glucosidase A in Escherichia coli K12. J Bacteriol 114, 909-915.
    [Google Scholar]
  27. Reynolds, A. E., Felton, J. & Wright, A. ( 1981; ). Insertion of DNA activates the cryptic bgl operon in Escherichia coli K12. Nature 293, 625-629.[CrossRef]
    [Google Scholar]
  28. Reynolds, A. E., Mahadevan, S., Le Grice, S. F. J. & Wright, A. ( 1986; ). Enhancement of bacterial gene expression by insertion elements or by mutation in a CAP-cAMP binding site. J Mol Biol 191, 85-95.[CrossRef]
    [Google Scholar]
  29. Rutberg, B. ( 1997; ). Antitermination of transcription of catabolic operons. Mol Microbiol 23, 413-421.[CrossRef]
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Schaefler, S. & Malamy, A. ( 1969; ). Taxonomic investigations on expressed and cryptic phospho-β-glucosidases in Enterobacteriaceae. J Bacteriol 99, 422-433.
    [Google Scholar]
  32. Schnetz, K. ( 1995; ). Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J 14, 2545-2550.
    [Google Scholar]
  33. Schnetz, K. & Rak, B. ( 1992; ). IS5: a mobile enhancer of transcription in Escherichia coli. Proc Natl Acad Sci USA 89, 1244-1248.[CrossRef]
    [Google Scholar]
  34. Schnetz, K., Toloczyki, C. & Rak, B. ( 1987; ). β-Glucoside (bgl) operon of Escherichia coli K12: nucleotide sequence, genetic organisation and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169, 2579-2590.
    [Google Scholar]
  35. Schnetz, K., Stulke, J., Gertz, S., Kruger, S., Krieg, M., Hecker, M. & Rak, B. ( 1996; ). LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178, 1971-1978.
    [Google Scholar]
  36. Singh, J., Mukerji, M. & Mahadevan, S. ( 1995; ). Transcriptional activation of the Escherichia coli bgl operon: negative regulation by DNA structural elements near the promoter. Mol Microbiol 17, 1085-1092.[CrossRef]
    [Google Scholar]
  37. Stulke, J., Arnaud, M., Rapoport, G. & Martin-Verstraete, I. ( 1998; ). PRD − a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28, 865-874.[CrossRef]
    [Google Scholar]
  38. Ueguchi, C., Ohta, T., Set, C., Suzuki, T. & Mizuno, T. ( 1998; ). The leuO gene product has a latent ability to relieve bgl silencing in Escherichia coli. J Bacteriol 180, 190-193.
    [Google Scholar]
  39. Varshney, U., Hutcheon, T. & Van de Sande, J. H. ( 1988; ). Sequence analysis, expression, and conservation of Escherichia coli uracil DNA glycosylase and its gene (ung). J Biol Chem 263, 7776-7784.
    [Google Scholar]
  40. Watanabe, H. & Okamura, N. (1991). The genus Shigella. In The Prokaryotes, 2nd edn, vol. III, A handbook on the biology of bacteria: ecophysiology, isolation, identification and applications, pp. 2754–2759. Edited by A. Balows & others. New York: Springer-Verlag.
  41. Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., Smith, S. S., Michael, M. Z. & Graham, M. W. ( 1989; ). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acid Res 17, 3469-3478.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-2039
Loading
/content/journal/micro/10.1099/00221287-146-8-2039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error