1887

Abstract

Two endoglucanase cDNAs, designated and , were isolated from a cDNA library of the anaerobic fungus . Sequence analysis revealed that has an open reading frame of 5142 bp and encodes a 1714 amino acid modular enzyme, Cel5A, with a molecular mass of 194847 Da. Cel5A consists of four catalytic domains homologous to family-5 glycosyl hydrolases, two C-terminal dockerins and one N-terminal dockerin. This is the first report of a complete gene containing tandem repeats of family-5 catalytic domains. The cDNA has an open reading frame of 1233 bp and encodes a 410 amino acid modular enzyme, Cel45A, with a molecular mass of 44380 Da. The catalytic domain, located at the C terminus, is homologous to the family-45 glycosyl hydrolases. Cel45A is the first family-45 enzyme to be described in an anaerobe. The presence of dockerins at the N and C termini of Cel5A and at the N terminus of Cel45A implies that both enzymes are part of the high-molecular-mass cellulose-degrading complex produced by . The catalytic domain nearest the C terminus of Cel5A and the catalytic domain of Cel45A were hyperexpressed as thioredoxin fusion proteins, Trx-Cel5A′ and Trx-Cel45A′, and subjected to biochemical analysis. Trx-Cel5A′ has a broad substrate range, showing activity against carboxymethylcellulose, acid-swollen cellulose, barley β-glucan, lichenin, carob galactomannan,-nitrophenyl β-D-cellobiopyranoside and xylan. Trx-Cel45A′ is active against carboxymethylcellulose, acid-swollen cellulose and the mixed linkage glucans, barley β-glucan and lichenin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1999
2000-08-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461999a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1999&mimeType=html&fmt=ahah

References

  1. Ali, B. R. S., Zhou, L., Graves, F. M., Freedman, R. B., Black, G. W., Gilbert, H. J. & Hazlewood, G. P. ( 1995; ). Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol Lett 125, 15-21.[CrossRef]
    [Google Scholar]
  2. Aylward, J. H., Gobius, K. S., Xue, G.-P., Simpson, G. D. & Dalrymple, B. P. ( 1999; ). The Neocallimastix patriciarum cellulase, CelD, contains three almost identical catalytic domains with high specific activities on avicel. Enzyme Microb Technol 24, 609-614.[CrossRef]
    [Google Scholar]
  3. Béguin, P. ( 1990; ). Molecular biology of cellulose degradation. Annu Rev Microbiol 44, 219-248.[CrossRef]
    [Google Scholar]
  4. Béguin, P. & Lemaire, M. ( 1996; ). The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol 31, 201-236.[CrossRef]
    [Google Scholar]
  5. Birnboim, H. C. & Doly, J. ( 1979; ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513-1522.[CrossRef]
    [Google Scholar]
  6. Black, G. W., Hazlewood, G. P., Xue, G.-P., Orpin, C. G. & Gilbert, H. J. ( 1994; ). Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem J 299, 381-387.
    [Google Scholar]
  7. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  8. Chen, H., Li, X.-L. & Ljungdahl, L. G. ( 1997; ). Sequencing of a 1,3-1,4-β-d-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. J Bacteriol 179, 6028-6034.
    [Google Scholar]
  9. Dalrymple, B. P., Cybinski, D. H., Layton, I., McSweeney, C. S., Xue, G.-P., Swadling, Y. J. & Lowry, J. B. ( 1997; ). Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143, 2605-2614.[CrossRef]
    [Google Scholar]
  10. Davies, G. J., Dodson, G. G., Hubbard, R. E. & 7 other authors ( 1993; ). Structure and function of endoglucanase V. Nature 365, 362–364.[CrossRef]
    [Google Scholar]
  11. Davies, G. J., Tolley, S. P., Henrissat, B., Hjort, C. & Schülein, M. ( 1995; ). Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1·9Å resolution. Biochemistry 34, 16210-16220.[CrossRef]
    [Google Scholar]
  12. Denman, S., Xue, G.-P. & Patel, B. ( 1996; ). Characterization of a Neocallimastix patriciarum cellulase cDNA (CelA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol 62, 1889-1896.
    [Google Scholar]
  13. Dijkerman, R., Op den Camp, H. J. M., Van der Drift, C. & Vogels, G. D. ( 1997; ). The role of the cellulolytic high molecular mass (HMM) complex of the anaerobic fungus Piromyces sp. strain E2 in the hydrolysis of microcrystalline cellulose. Arch Microbiol 167, 137-142.[CrossRef]
    [Google Scholar]
  14. Fanutti, C., Ponyi, T., Black, G. W., Hazlewood, G. P. & Gilbert, H. J. ( 1995; ). The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem 270, 29314-29322.[CrossRef]
    [Google Scholar]
  15. Fujino, Y., Ogata, K., Nagamine, T. & Ushida, K. ( 1998; ). Cloning, sequencing, and expression of an endoglucananse gene from the rumen anaerobic fungus Neocallimastix frontalis MCH3. Biosci Biotechnol Biochem 62, 1795-1798.[CrossRef]
    [Google Scholar]
  16. Gilbert, H. J., Hall, J., Hazlewood, G. P. & Ferreira, L. M. A. ( 1990; ). The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre. Mol Microbiol 4, 759-767.[CrossRef]
    [Google Scholar]
  17. Gilbert, H. J., Hazlewood, G. P., Laurie, J. I., Orpin, C. G. & Xue, G.-P. ( 1992; ). Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol Microbiol 6, 2065-2072.[CrossRef]
    [Google Scholar]
  18. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C. & Warren, R. A. J. ( 1991; ). Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55, 303-315.
    [Google Scholar]
  19. Hall, J., Hazlewood, G. P., Barker, P. J. & Gilbert, H. J. ( 1988; ). Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69, 29-38.[CrossRef]
    [Google Scholar]
  20. Hazlewood, G. P. & Gilbert, H. J. ( 1998; ). Structure–function relationships in the cellulase–hemicellulase system of anaerobic fungi. In Carbohydrases from Trichoderma reesei and Other Microorganisms, pp. 147-155. Edited by M. Claeyssens, W. Nerinckx & K. Piens. Cambridge: The Royal Society of Chemistry.
  21. Henrissat, B. ( 1991; ). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280, 309-316.
    [Google Scholar]
  22. Henrissat, B. ( 1998; ). Glycosidase families. Biochem Soc Trans 26, 153-156.
    [Google Scholar]
  23. Henrissat, B. & Bairoch, A. ( 1993; ). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293, 781-788.
    [Google Scholar]
  24. Henrissat, B. & Bairoch, A. ( 1996; ). Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316, 695-696.
    [Google Scholar]
  25. Hilge, M., Gloor, S. M., Rypniewski, W., Sauer, O., Heightman, T. D., Zimmermann, W., Winterhalter, K. & Piontek, K. ( 1998; ). High-resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca – substrate specificity in glycosyl hydrolase family 5. Structure 6, 1433-1444.[CrossRef]
    [Google Scholar]
  26. Kemp, P., Lander, D. J. & Orpin, C. G. ( 1984; ). The lipids of the anaerobic rumen fungus Piromonas communis. J Gen Microbiol 130, 27-37.
    [Google Scholar]
  27. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  28. Leschine, S. B. ( 1995; ). Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49, 399-426.[CrossRef]
    [Google Scholar]
  29. Li, J. & Heath, I. B. ( 1993; ). Chytridiomycetous gut fungi, oft overlooked contributors to herbivore digestion. Can J Microbiol 39, 1003-1013.[CrossRef]
    [Google Scholar]
  30. Li, X.-L., Chen, H. & Ljungdahl, L. G. ( 1997a; ). Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol 63, 628-635.
    [Google Scholar]
  31. Li, X.-L., Chen, H. & Ljungdahl, L. G. ( 1997b; ). Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol 63, 4721-4728.
    [Google Scholar]
  32. Liu, J.-H., Selinger, L. B., Hui, Y.-H., Molony, M. M., Cheng, K.-J. & Beauchemin, K. A. ( 1997; ). An endoglucanase from the anaerobic fungus Orpinomyces joyonii: characterization of the gene and its product. Can J Microbiol 43, 477-485.[CrossRef]
    [Google Scholar]
  33. Mackenzie, L. F., Brooke, G. S., Cutfield, J. F., Sullivan, P. A. & Withers, S. G. ( 1997; ). Identification of Glu-330 as the catalytic nucleophile of Candida albicans exo-β-(1,3)-glucanase. J Biol Chem 272, 3161-3167.[CrossRef]
    [Google Scholar]
  34. Mayer, F., Coughlan, M. P., Mori, Y. & Ljungdahl, L. G. ( 1987; ). Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl Environ Microbiol 53, 2785-2792.
    [Google Scholar]
  35. Miller, G. L. ( 1959; ). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426-428.[CrossRef]
    [Google Scholar]
  36. Millward-Sadler, S. J., Hall, J., Black, G. W., Hazlewood, G. P. & Gilbert, H. J. ( 1996; ). Evidence that the Piromyces gene family encoding endo-1,4-mannanases arose through gene duplication. FEMS Microbiol Lett 141, 183-188.[CrossRef]
    [Google Scholar]
  37. Mittendorf, V. & Thomson, J. A. ( 1993; ). Cloning of an endo-(1→4)-β-glucanase gene, celA, from the rumen bacterium Clostridium sp. (‘C. longisporum’) and characterization of its product, CelA, in Escherichia coli. J Gen Microbiol 139, 3233-3242.[CrossRef]
    [Google Scholar]
  38. Munn, E. A. ( 1994; ). The ultrastructure of anaerobic fungi. In Anaerobic Fungi: Biology, Ecology, and Function, pp. 47-105. Edited by D. O. Mountfort & C. G. Orpin. New York: Marcel Dekker.
  39. Orpin, C. G. ( 1975; ). Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91, 249-262.[CrossRef]
    [Google Scholar]
  40. Orpin, C. G. ( 1981; ). Isolation of cellulolytic phycomycete fungi from the caecum of the horse. J Gen Microbiol 123, 287-296.
    [Google Scholar]
  41. Poole, D. M., Hazlewood, G. P., Laurie, J. I., Barker, P. J. & Gilbert, H. J. ( 1990; ). Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol Gen Genet 223, 217-223.
    [Google Scholar]
  42. Saloheimo, A., Henrissat, B., Hoffrén, A.-M., Teleman, O. & Penttilä, M. ( 1994; ). A novel, small endoglucanase gene, egl5, from Trichoderma reesei, isolated by expression in yeast. Mol Microbiol 13, 219-228.[CrossRef]
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Schauwecker, F., Wannner, G. & Kahmann, R. ( 1995; ). Filament-specific expression of a cellulase gene in the dimorphic fungus Ustilago maydis. Biol Chem Hoppe-Seyler 376, 617-625.[CrossRef]
    [Google Scholar]
  45. Schülein, M. S. ( 1997; ). Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57, 71-81.[CrossRef]
    [Google Scholar]
  46. Selinger, L. B., Forsberg, C. W. & Cheng, K.-J. ( 1996; ). The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2, 263-284.[CrossRef]
    [Google Scholar]
  47. Sheppard, P. O., Grant, F. J., Oort, P. J., Sprecher, C. A., Foster, D. C., Hagen, F. S., Upshall, A., McKnight, G. L. & O’Hara, P. J. ( 1994; ). The use of conserved cellulase family-specific sequences to clone cellulase homologue cDNAs from Fusarium oxysporum. Gene 150, 163-167.[CrossRef]
    [Google Scholar]
  48. Shoham, Y., Lamed, R. & Bayer, E. A. ( 1999; ). The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7, 275-281.[CrossRef]
    [Google Scholar]
  49. Teather, R. M. & Wood, P. J. ( 1982; ). Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43, 777-780.
    [Google Scholar]
  50. Teunissen, M. J., Hermans, J. M. H., Huis in ’t Veld, J. H. J. & Vogels, G. D. ( 1993; ). Purification and characterization of a complex bound and a free β-1,4-endoxylanase from the culture fluid of the anaerobic fungus Piromyces sp. strain E2. Arch Microbiol 159, 265-271.[CrossRef]
    [Google Scholar]
  51. Tomme, P., Warren, R. A. J. & Gilkes, N. R. ( 1995; ). Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37, 1-81.
    [Google Scholar]
  52. Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M. I., Nielsen, B. B., Rickers, A. & Theodorou, M. K. ( 1994; ). Anaerobic fungi in herbivorous animals. Mycol Res 98, 129-152.[CrossRef]
    [Google Scholar]
  53. Vazquez de Aldana, C. R., Correa, J., San Segundo, P., Bueno, A., Nebreda, A. R., Mendez, E. & del Rey, F. ( 1991; ). Nucleotide sequence of the exo-1,3-β-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97, 173-182.[CrossRef]
    [Google Scholar]
  54. Warren, R. A. J. ( 1996; ). Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50, 183-212.[CrossRef]
    [Google Scholar]
  55. Wilson, C. A. & Wood, T. M. ( 1992; ). The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 37, 125-129.
    [Google Scholar]
  56. Wood, T. M. ( 1971; ). The cellulase of Fusarium solani. Purification and specificity of the β-(1-4)-glucanase and the β-d-glucosidase components. Biochem J 121, 353-362.
    [Google Scholar]
  57. Wubah, D. A., Akin, D. E. & Borneman, W. S. ( 1993; ). Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi. Crit Rev Microbiol 19, 99-115.[CrossRef]
    [Google Scholar]
  58. Xue, G.-P., Gobius, K. S. & Orpin, C. G. ( 1992; ). A novel polysaccharide hydrolase cDNA (celD) from Neocallimastix patriciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities. J Gen Microbiol 138, 2397-2403.[CrossRef]
    [Google Scholar]
  59. Zhou, L., Xue, G.-P., Orpin, C. G., Black, G. W., Gilbert, H. J. & Hazlewood, G. P. ( 1994; ). Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J 297, 359-364.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1999
Loading
/content/journal/micro/10.1099/00221287-146-8-1999
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error