1887

Abstract

Hydrolysis of the plant cell wall polysaccharides cellulose and xylan requires the synergistic interaction of a repertoire of extracellular enzymes. Recently, evidence has emerged that anaerobic bacteria can synthesize high levels of periplasmic xylanases which may be involved in the hydrolysis of small xylo-oligosaccharides absorbed by the micro-organism. , a saprophytic aerobic soil bacterium that is highly active against plant cell wall polysaccharides, was shown to express internal xylanase activity when cultured on media containing xylan or glucose as sole carbon source. A genomic library of DNA, constructed in λZAPII, was screened for xylanase activity. The nucleotide sequence of the genomic insert from a xylanase-positive clone that expressed intracellular xylanase activity in revealed an ORF of 1137 bp (), encoding a polypeptide with a deduced of 43413, defined as xylanase C (XylC). Probing a gene library of subsp. with identified a homologue (designated ) encoding XylG; XylG and were 67% and 63% identical to the corresponding sequences, respectively. Both XylC and XylG exhibit extensive sequence identity with family 10 xylanases, particularly with non-modular enzymes, and gene deletion studies on supported the suggestion that they are single-domain xylanases. Purified recombinant XylC had an of 41000, and displayed biochemical properties typical of family 10 polysaccharidases. However, unlike previously characterized xylanases, XylC was particularly sensitive to proteolytic inactivation by pancreatic proteinases and was thermolabile. was grown to late-exponential phase in the presence of glucose or xylan and the cytoplasmic, periplasmic and cell envelope fractions were probed with anti-XylC antibodies. The results showed that XylC was absent from the culture media but was predominantly present in the periplasm of cells grown on glucose, xylan, CM-cellulose or Avicel. These data suggest that can express non-modular internal xylanases whose potential roles in the hydrolysis of plant cell wall components are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1959
2000-08-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461959a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1959&mimeType=html&fmt=ahah

References

  1. Berns K. I., Thomas C. A. 1965; Isolation of high molecular weight DNA from Haemophilus influenza. J MoI Biol 11:476–490 [CrossRef]
    [Google Scholar]
  2. Birnboim B. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1515 [CrossRef]
    [Google Scholar]
  3. Bolam D. N., Ciruela A., McQueen-Mason S., Simpson P., Williamson M. P., Rixon J. E., Boraston A., Hazlewood G. P., Gilbert H. J. 1998; Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331:775–781
    [Google Scholar]
  4. Black G. W., Hazlewood G. P., Shou G.-P., Orpin C. G., Gilbert H. J. 1994; Xylanase B from Neocalimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem J 299:381–387
    [Google Scholar]
  5. Carle-Urioste J. C., Escobar-Vera J., El-Gogary S., Renrique-Silva F., Torigoi E., Crivellaro O., Berrera-Estreta A., EI-Dorry R. 1997; Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem 272:10169–10174 [CrossRef]
    [Google Scholar]
  6. Charnock S. J., Spurway T. D., Xie H., Beylot M. H., Virden R., Warren R. A., Hazlewood G. P., Gilbert H. J. 1998; The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J Biol Chem 273:32187–32199 [CrossRef]
    [Google Scholar]
  7. Clarke J. H., Laurie J. I., Gilbert H. J., Hazlewood G. P. 1991; Multiple xylanases of Cellulomonas fimi are encoded by distinct genes. FEMS Microbiol Lett 83:305–310 [CrossRef]
    [Google Scholar]
  8. Din N., Gilkes N. R., Tekant B., Miller R. C., Warren R. A. J., Kilburn D. G. 1991; Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Bio/Technology 9:1096–1099 [CrossRef]
    [Google Scholar]
  9. Din N., Damude H. J., Gilkes N. R., Miller R. C., Warren R. A. J., Kilburn D. G. 1994; C1-Cx revisited: intramolecular synergism in a cellulase. Proc Natl Acad Sci U S A 91:11383–11387 [CrossRef]
    [Google Scholar]
  10. Fernandes A. C., Fontes C. M. G. A., Gilbert H. J., Hazlewood G. P., Fernandes T. H., Ferreira L. M. A. 1999; Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem J 342:105–110 [CrossRef]
    [Google Scholar]
  11. Ferreira L. M. A., Durrant A. J., Rixon J., Hazlewood G. P., Gilbert H. J. 1990; Spatial separation of protein domains is not essential for catalytic activity or substrate binding in a xylanase. Biochem J 269:261–264
    [Google Scholar]
  12. Fontes C. M. G. A., Hazlewood G. P., Morag E., Hall J., Hirst B. H., Gilbert H. J. 1995; Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J 307:151–158
    [Google Scholar]
  13. Fontes C. M. G. A., Clarke J. H., Hazlewood G. P., Fernandes T. H., Gilbert H. J., Ferreira L. M. A. 1997; Possible roles for a non-modular, thermostable and proteinase-resistant cellulase from the mesophilic aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol 48:473–479 [CrossRef]
    [Google Scholar]
  14. Fontes C. M. G. A., Clarke J. H., Hazlewood G. P., Fernandes T. H., Gilbert H. J., Ferreira L. M. A. 1998; Identification of tandemly repeated type VI cellulose-binding domains in an endoglucanase from the aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol 49:552–559 [CrossRef]
    [Google Scholar]
  15. Gasparic A., Marinsek L. R., Martin J., Wallace R. J., Nekrep F. V., Flint H. J. 1995; Isolation of genes encoding beta-d-xylanase, beta-d-xylosidase and alpha-l-arabinofuranosidase activities from the rumen bacterium Prevotella ruminicola B1(4). FEMS Microbiol Lett 125:135–141
    [Google Scholar]
  16. Gilkes N. R., Langsford M. L., Kilburn D. G., Miller R. C., Warren R. A. J. 1984; Mode of action and substrate specificities of cellulases from cloned bacterial genes. J Biol Chem 259:10455–10459
    [Google Scholar]
  17. Hazlewood G. P., Gilbert H. J. 1998; Structure and function analysis of Pseudomonas plant cell wall hydrolases. Biochem Soc Trans 26:185–190
    [Google Scholar]
  18. Hazlewood G. P., Laurie J. I., Ferreira L. M. A., Gilbert H. J. 1992; Pseudomonas fluorescens subsp. cellulosa: an alternative model for bacterial cellulase. J Appl Bacteriol 72:244–251 [CrossRef]
    [Google Scholar]
  19. Henrissat B., Bairoch A. 1993; New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  21. Meinke A., Gilkes N. R., Kwan E., Kilburn D. G., Warren R. A. J., Miller R. C. 1994; Cellobiohydrolase A (CbhA) from the cellulolytic bacterium Cellulomonas fimi is a β-1,4-exocellobiohydrolase analogous to Trichoderma reesei CBHII. Mol Microbiol 12:423–432 [CrossRef]
    [Google Scholar]
  22. Miller G. L. 1959; The use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  23. Millward-Sadler S. J., Poole D. M., Henrissat B., Hazlewood G. P., Clarke J. H., Gilbert H. J. 1994; Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol Microbiol 11:375–382 [CrossRef]
    [Google Scholar]
  24. Millward-Sadler S. J., Clarke J. H., Davidson K., Hazlewood G. P., Black G. W., Gilbert H. J. 1995; Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem J 312:39–48
    [Google Scholar]
  25. Miyazaki K., Martin J. C., Marinsek-Logar R., Flint H. J. 1997; Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P-ruminicola subsp. brevis). Anaerobe 3:373–381 [CrossRef]
    [Google Scholar]
  26. Norrander J., Kemp T., Messing J. 1983; Construction of improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26:101–106 [CrossRef]
    [Google Scholar]
  27. Rixon J. E., Ferreira L. M. A., Durrant A. J., Laurie J. L., Hazlewood G. P., Gilbert H. J. 1992; Characterization of the gene celD and its encoded product the 1,4-d-glucan glucohydrolase D from Pseudomonas fluorescens subsp. cellulosa. Biochem J 285:947–955
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci U S A 474:5463–5467
    [Google Scholar]
  30. Spurway T. D., Morland C., Cooper A., Sumner L., Hazlewood G. P., O’Donnell A. G., Pickersgill R. W., Gilbert H. J. 1997; Calcium protects a mesophilic xylanase from proteinase inactivation and thermal unfolding. J Biol Chem 272:17523–17530 [CrossRef]
    [Google Scholar]
  31. Sun J. L., Sakka K., Karita S., Kimura T., Ohmiya K. 1998; Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBD to xylan hydrolysis. J Ferment Bioeng 85:63–68 [CrossRef]
    [Google Scholar]
  32. Tabernero C., Sánebez T. J., Pérez P., Santamarı́a I. L. 1995; Cloning and DNA sequencing of xynA, a gene encoding an endo-beta-1,4-xylanase from an alkalophilic Bacillus strain (N137). Appl Environ Microbiol 61:2420–2424
    [Google Scholar]
  33. Teather R. M., Wood P. J. 1982; Use of Congo Red-polysaccharide interactions to the enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–782
    [Google Scholar]
  34. Tomme P., Warren R. A., Gilkes N. R. 1995; Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81
    [Google Scholar]
  35. Torigoi E., Henrique-Silva F., Escobar-Vera J., Carle-Urı́oste J. C., Crivellaro O., El-Dorry H., El-Gogary S. 1996; Mutants of Trichoderma reesei are defective in cellulose induction, but not basal expression of cellulase-encoding genes. Gene 173:199–203 [CrossRef]
    [Google Scholar]
  36. Wang P., Ali S., Mason J. C., Sims P. F. G., Broda P. 1992; Xylanases from Streptomyces cyaneus. In Xylans and Xylanases pp. 225–234Edited by Visser J., Beldman G., Kusters-van Someren M. A., Voragen A. G. J. Amsterdam: Elsevier;
    [Google Scholar]
  37. Whitehead T. R. 1995; Nucleotide sequences of xylan-inducible xylanase and xylosidase-arabinosidase genes from Bacteroides ovatus V975. Biochim Biophys Acta 1244:239–241 [CrossRef]
    [Google Scholar]
  38. Zeilinger S., Mach K. L., Sebindler M., Rerzog P., Kubicek C. 1996; Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem 271:25624–25629 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-146-8-1959
Loading
/content/journal/micro/10.1099/00221287-146-8-1959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error