1887

Abstract

The role of exotoxin A (ETA) as a virulence factor in the lung infections of cystic fibrosis (CF) patients is not well understood. Transcript-accumulation studies of bacterial populations in sputum reveal high levels of transcription of , which encodes ETA, in some patients with CF. However, in general, tissue damage in the lungs of patients with CF does not seem to be consistent with a high level of expression of active ETA. To address this discrepancy the authors analysed the production and activity of ETA produced by a number of CF isolates. One CF isolate, strain 4384, transcribed at levels similar to the hypertoxigenic strain PA103 but produced an ETA with reduced ADP-ribosyltransferase (ADPRT) activity. Complementation of strain 4384 with the wild-type and a mixed toxin experiment suggested the absence of inhibitory accessory factors within this strain. The gene from strain 4384 was cloned and sequenced, revealing only three mutations in the gene, all within the enzymic domain. The first mutation changed Ser-410 to Asn. The second mutation was located within an α-helix, altering Ala-476 to Glu. The third mutation, Ser-515 to Gly, was found at the protein surface. To date, Ser-410, Ala-476 and Ser-515 have not been reported to play a role in the ADPRT activity of ETA. However, it may be the combination of these mutations that reduces the enzymic activity of ETA produced by strain 4384. Expression of 4384 and wild-type in an isogenic strain revealed that 4384 ETA had 10-fold less ADPRT activity than wild-type ETA. ETA purified from strain 4384 also demonstrated 10-fold less ADPRT activity as compared to wild-type ETA. Cytotoxicity assays of purified ETA from strain 4384 indicated that the cytotoxicity of 4384 ETA is not reduced; it may be slightly more toxic than wild-type ETA. Analysis of five other CF isolates revealed a similar reduction in ADPRT activity to that seen in strain 4384. Sequence analysis of the enzymic domain of from the five CF strains identified a number of mutations that could account for the reduction in ADPRT activity. These results suggest that some CF isolates produce an ETA with reduced enzymic activity and this may partially explain the pathogenesis of chronic lung infections of CF due to .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1891
2000-08-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461891a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1891&mimeType=html&fmt=ahah

References

  1. Allured, V. S., Collier, R. J., Carroll, S. F. & McKay, D. B. ( 1986; ). Structure of exotoxin A of Pseudomonas aeruginosa at 3·0 angstrom resolution. Proc Natl Acad Sci USA 83, 1320-1324.[CrossRef]
    [Google Scholar]
  2. Brandhuber, B. J., Allured, V. S., Falbel, T. G. & McKay, D. B. ( 1988; ). Mapping the enzymatic active site of Pseudomonas aeruginosa exotoxin A. Proteins 3, 146-154.[CrossRef]
    [Google Scholar]
  3. Burke, V., Robinson, J. O., Richardson, C. J. L. & Bundell, C. S. ( 1991; ). Longitudinal studies of virulence factors of Pseudomonas aeruginosa in cystic fibrosis. Pathology 23, 145-148.[CrossRef]
    [Google Scholar]
  4. Carroll, S. F. & Collier, R. J. ( 1987; ). Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 262, 8707-8711.
    [Google Scholar]
  5. Chaudhary, V. K., Jinno, Y., FitzGerald, D. & Pastan, I. ( 1990; ). Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci USA 87, 308-312.[CrossRef]
    [Google Scholar]
  6. Chow, J. T., Chen, M.-S., Wu, H. C. P. & Hwang, J. ( 1989; ). Identification of the carboxyl-terminal amino acids important for the ADP-ribosylation activity of Pseudomonas exotoxin A. J Biol Chem 264, 18818-18823.
    [Google Scholar]
  7. Chung, D. W. & Collier, R. J. ( 1977; ). Enzymatically active peptide from the adenosine diphosphate-ribosylating toxin of Pseudomonas aeruginosa. Infect Immun 16, 832-841.
    [Google Scholar]
  8. Domenighini, M., Magagnoli, C., Pizza, M. & Rappuoli, R. ( 1994; ). Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol Microbiol 14, 41-50.[CrossRef]
    [Google Scholar]
  9. Hamood, A. N., Olson, J. C., Vincent, T. S. & Iglewski, B. H. ( 1989; ). Regions of toxin A involved in toxin A excretion in Pseudomonas aeruginosa. J Bacteriol 171, 1817-1824.
    [Google Scholar]
  10. Han, X. Y. & Galloway, D. R. ( 1995; ). Active site mutations of Pseudomonas aeruginosa exotoxin A. Analysis of the His440 residue. J Biol Chem 270, 679-684.[CrossRef]
    [Google Scholar]
  11. Hwang, J., FitzGerald, D. J., Adhya, S. & Pastan, I. ( 1987; ). Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell 48, 129-136.[CrossRef]
    [Google Scholar]
  12. Iglewski, B. H. & Kabat, D. ( 1975; ). NAD-independent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72, 2284-2288.[CrossRef]
    [Google Scholar]
  13. Iglewski, B. H. & Sadoff, J. C. ( 1979; ). Toxin inhibitors of protein synthesis: production purification and assay of Pseudomonas aeruginosa toxin A. Methods Enzymol 60, 780-793.
    [Google Scholar]
  14. Iglewski, B. H., Liu, P. V. & Kabat, D. ( 1977; ). Mechanisms of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun 15, 138-144.
    [Google Scholar]
  15. Jaffar-Bandjee, M. C., Lazdunski, A., Bally, M., Carrère, J., Chazalette, J. P. & Galabert, C. ( 1995; ). Production of elastase, exotoxin A, and alkaline protease in sputa during pulmonary exacerbation of cystic fibrosis in patients chronically infected by Pseudomonas aeruginosa. J Clin Microbiol 33, 924-929.
    [Google Scholar]
  16. Jinno, Y., Chaudhary, V. K., Kondo, T., Adhya, S., FitzGerald, D. J. & Pastan, I. ( 1988; ). Mutational analysis of domain I of Pseudomonas exotoxin. Mutations in domain I of Pseudomonas exotoxin which reduce cell binding and animal toxicity. J Biol Chem 263, 13203-13207.
    [Google Scholar]
  17. Jinno, Y., Ogata, M., Chaudhary, V. K., Willingham, M. C., Adhya, S., FitzGerald, D. & Pastan, I. ( 1989; ). Domain II mutants of Pseudomonas exotoxin deficient in translocation. J Biol Chem 264, 15953-15959.
    [Google Scholar]
  18. Klinger, J. D., Straus, D. C., Hilton, C. B. & Bass, J. A. ( 1978; ). Antibodies to proteases and exotoxin A of Pseudomonas aeruginosa in patients with cystic fibrosis: demonstration by radioimmunoassay. J Infect Dis 138, 49-58.[CrossRef]
    [Google Scholar]
  19. Kounnas, M. Z., Morris, R. E., Thompson, M. R., FitzGerald, D. J., Strickland, D. K. & Saelinger, C. B. ( 1992; ). The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 267, 12420-12423.
    [Google Scholar]
  20. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  21. Liu, P. V. ( 1966; ). The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. III. Identity of the lethal toxins in vitro and in vivo. J Infect Dis 116, 481-489.[CrossRef]
    [Google Scholar]
  22. Liu, P. V. ( 1973; ). Exotoxins of Pseudomonas aeruginosa. I. Factors that influence the production of exotoxin A. J Infect Dis 128, 506-513.[CrossRef]
    [Google Scholar]
  23. Moss, R. B., Hsu, Y.-P., Lewiston, N. J., Curd, J. G., Milgrom, H., Hart, S., Dyer, B. & Larrick, J. W. ( 1986; ). Association of systemic immune complexes, complement activation and antibodies to Pseudomonas aeruginosa lipopolysaccharide and exotoxin A with mortality in cystic fibrosis. Am Rev Respir Dis 133, 648-652.
    [Google Scholar]
  24. Ogata, M., Fryling, C. M., Pastan, I. & FitzGerald, D. ( 1992; ). Cell-mediated cleavage of Pseudomonas exotoxin between Arg279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. J Biol Chem 267, 25396-25401.
    [Google Scholar]
  25. Raivio, T. L., Ujack, E. E., Rabin, H. R. & Storey, D. G. ( 1994; ). Association between transcript levels of the Pseudomonas aeruginosa regA, regB, and toxA genes in sputa of cystic fibrosis patients. Infect Immun 62, 3506-3514.
    [Google Scholar]
  26. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef]
    [Google Scholar]
  27. Seetharam, S., Chaudhary, V. K., FitzGerald, D. & Pastan, I. ( 1991; ). Increased cytotoxic activity of Pseudomonas exotoxin and two chimeric toxins ending in KDEL. J Biol Chem 266, 17376-17381.
    [Google Scholar]
  28. Siegall, C. B., Chaudhary, V. K., FitzGerald, D. J. & Pastan, I. ( 1989; ). Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin. J Biol Chem 264, 14256-14261.
    [Google Scholar]
  29. Sokol, P. A., Luan, M.-Z., Storey, D. G. & Thirukkumaran, P. ( 1994; ). Genetic rearrangement associated with in vivo mucoid conversion of Pseudomonas aeruginosa PAO is due to insertion elements. J Bacteriol 176, 553-562.
    [Google Scholar]
  30. Storey, D. G., Raivio, T. L., Frank, D. W., Wick, M. J., Kaye, S. & Iglewski, B. H. ( 1991; ). Effect of regB on expression from the P1 and P2 promoters of the Pseudomonas aeruginosa regAB operon. J Bacteriol 173, 6088-6094.
    [Google Scholar]
  31. Storey, D. G., Ujack, E. E. & Rabin, H. R. ( 1992; ). Population transcript accumulation of Pseudomonas aeruginosa exotoxin A and elastase in sputa from patients with cystic fibrosis. Infect Immun 60, 4687-4694.
    [Google Scholar]
  32. Taupiac, M.-P., Bebien, M., Alami, M. & Beaumelle, B. ( 1999; ). A deletion within the translocation domain of Pseudomonas exotoxin A enhances translocation efficiency and cytotoxicity concominantly. Mol Microbiol 31, 1385-1393.[CrossRef]
    [Google Scholar]
  33. Taylor, R. F. H., Hodson, M. E. & Pitt, T. L. ( 1992; ). Auxotrophy of Pseudomonas aeruginosa in cystic fibrosis. FEMS Microbiol Lett 71, 243-246.
    [Google Scholar]
  34. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350-4354.[CrossRef]
    [Google Scholar]
  35. Wick, M. J. & Iglewski, B. H. ( 1988; ). Determination of the amino acid change responsible for the nontoxic, cross-reactive Exotoxin A protein (CRM 66) of Pseudomonas aeruginosa PAO-PR1. J Bacteriol 170, 5385-5388.
    [Google Scholar]
  36. Wick, M. J., Hamood, A. N. & Iglewski, B. H. ( 1990; ). Analysis of the structure–function relationship of Pseudomonas aeruginosa exotoxin A. Mol Microbiol 4, 527-535.[CrossRef]
    [Google Scholar]
  37. Woods, D. E., Schaffer, M. S., Rabin, H. R., Campbell, G. D. & Sokol, P. A. ( 1986; ). Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Clin Microbiol 24, 260-264.
    [Google Scholar]
  38. Woods, D. E., Sokol, P. A., Bryan, L. E., Storey, D. G., Mattingly, S. J., Vogel, H. J. & Ceri, H. ( 1991; ). In vivo regulation of virulence in Pseudomonas aeruginosa associated with genetic rearrangement. J Infect Dis 163, 143-149.[CrossRef]
    [Google Scholar]
  39. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1891
Loading
/content/journal/micro/10.1099/00221287-146-8-1891
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error