1887

Abstract

Evidence is presented that the growth medium used to prepare a challenge inoculum is a significant factor determining the ability of a fungus strain to gain an initial invasive hold immediately after injection into an animal host, and thus determining gross strain lethality. Three strains, one known to be attenuated in virulence, were grown in two broth media and injected intravenously at different doses into female NMRI mice and male albino guinea pigs. For each fungus strain and challenge dose, survival was longer from inocula grown in a diluted, buffered peptone-based broth than from inocula grown in Sabouraud glucose broth. When animals were challenged intravenously with yeast doses adjusted to give the same mean survival time regardless of strain or growth medium, the progression of fungus tissue burdens (c.f.u. g) in kidneys, lungs, liver, spleen and brain samples was broadly similar for all three strains but differed between the two animal hosts. The morphological form of recovered from infected tissues differed at the level of both the fungus strain and the host tissue. Use of survival-standardized inocula provides a means of distinguishing differences in progression of experimental disseminated infections that are related to the infecting strain from those related to the animal host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1881
2000-08-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461881a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1881&mimeType=html&fmt=ahah

References

  1. Agabian, N., Odds, F. C., Poulain, D., Soll, D. R. & White, T. C. ( 1994; ). Pathogenesis of invasive candidiasis. J Med Vet Mycol 32 (suppl. 1), 229–237.
    [Google Scholar]
  2. Antley, P. P. & Hazen, K. C. ( 1988; ). Role of yeast cell growth temperature on Candida albicans virulence in mice. Infect Immun 56, 2884-2890.
    [Google Scholar]
  3. Ashman, R. B. & Bolitho, E. M. ( 1993; ). Strain differences in the severity of lesions in murine systemic candidiasis correlate with the production of functional gamma interferon by Candida-activated lymphocytes in vitro. Lymphokine Cytokine Res 12, 471-476.
    [Google Scholar]
  4. Ashman, R. B., Kay, P. H., Lynch, D. M. & Papadimitriou, J. M. ( 1991; ). Murine candidiasis: sex differences in the severity of tissue lesions are not associated with levels of serum C3 and C5. Immunol Cell Biol 69, 7-10.[CrossRef]
    [Google Scholar]
  5. Ashman, R. B., Fulurija, A. & Papadimitriou, J. M. ( 1996; ). Strain-dependent differences in host response to Candida albicans infection in mice are related to organ susceptibility and infectious load. Infect Immun 64, 1866-1869.
    [Google Scholar]
  6. Ashman, R. B., Fulurija, A. & Papadimitriou, J. M. ( 1997; ). Evidence that two independent host genes influence the severity of tissue damage and susceptibility to acute pyelonephritis in murine systemic candidiasis. Microb Pathog 22, 187-192.[CrossRef]
    [Google Scholar]
  7. Baine, W. B., Koenig, M. G. & Goodman, J. S. ( 1974; ). Clearance of Candida albicans from the bloodstream of rabbits. Infect Immun 10, 1420-1425.
    [Google Scholar]
  8. Becker, J. M., Henry, L. K., Jiang, W. & Koltin, Y. ( 1995; ). Reduced virulence of Candida albicans mutants affected in multidrug resistance. Infect Immun 63, 4515-4518.
    [Google Scholar]
  9. Brown, A. P. J. & Gow, N. A. R. ( 1999; ). Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7, 333-338.[CrossRef]
    [Google Scholar]
  10. Bulawa, C. E., Miller, D. W., Henry, L. K. & Becker, J. M. ( 1995; ). Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc Natl Acad Sci U S A 92, 10570-10574.[CrossRef]
    [Google Scholar]
  11. Buurman, E. T., Westwater, C., Hube, B., Brown, A. J., Odds, F. C. & Gow, N. A. R. ( 1998; ). Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans. Proc Natl Acad Sci U S A 95, 7670-7675.[CrossRef]
    [Google Scholar]
  12. Calera, J. A., Zhao, X. J., De Bernardis, F., Sheridan, M. & Calderone, R. ( 1999; ). Avirulence of Candida albicans CaHK1 mutants in a murine model of hematogenously disseminated candidiasis. Infect Immun 67, 4280-4284.
    [Google Scholar]
  13. Calera, J. A., Zhao, X. J. & Calderone, R. ( 2000; ). Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun 68, 518-525.[CrossRef]
    [Google Scholar]
  14. Csank, C., Schroppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. Y. & Whiteway, M. ( 1998; ). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66, 2713-2721.
    [Google Scholar]
  15. De Bernardis, F., Adriani, D., Lorenzini, R., Pontieri, E., Carruba, G. & Cassone, A. ( 1993; ). Filamentous growth and elevated vaginopathic potential of a nongerminative variant of Candida albicans expressing low virulence in systemic infection. Infect Immun 61, 1500-1508.
    [Google Scholar]
  16. De Bernardis, F., Muhlschlegel, F. A., Cassone, A. & Fonzi, W. A. ( 1998; ). The pH of the host niche controls gene expression in and virulence of Candida. Infect Immun 66, 3317-3325.
    [Google Scholar]
  17. Diez-Orejas, R., Molero, G., Navarro-Garcia, F., Pla, J., Nombela, C. & Sanchez-Perez, M. ( 1997; ). Reduced virulence of Candida albicans MKC1 mutants: a role for mitogen-activated protein kinase in pathogenesis. Infect Immun 65, 833-837.
    [Google Scholar]
  18. Evans, E. G. V., Odds, F. C. & Holland, K. T. ( 1975; ). Resistance of the Candida albicans filamentous cycle to environmental change. Sabouraudia 13, 231-238.[CrossRef]
    [Google Scholar]
  19. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.
    [Google Scholar]
  20. Fransen, J., Van Cutsem, J., Vandesteene, R. & Janssen, P. A. J. ( 1984; ). Histopathology of experimental systemic candidosis in guinea-pigs. Sabouraudia 22, 455-469.[CrossRef]
    [Google Scholar]
  21. Fulurija, A., Ashman, R. B. & Papadimitriou, J. M. ( 1996; ). Neutrophil depletion increases susceptibility to systemic and vaginal candidiasis in mice, and reveals differences between brain and kidney in mechanisms of host resistance. Microbiology 142, 3487-3496.[CrossRef]
    [Google Scholar]
  22. Gale, C. A., Bendel, C. M., McClellan, M., Hauser, M., Becker, J. M., Berman, J. & Hostetter, M. K. ( 1998; ). Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355-1358.[CrossRef]
    [Google Scholar]
  23. Ghannoum, M. A. ( 1998; ). Extracellular phospholipases as universal virulence factor in pathogenic fungi. Nippon Ishinkin Gakkai Zasshi 39, 55-59.[CrossRef]
    [Google Scholar]
  24. Ghannoum, M. A., Spellberg, B., Saporito-Irwin, S. M. & Fonzi, W. A. ( 1995; ). Reduced virulence of Candida albicans PHR1 mutants. Infect Immun 63, 4528-4530.
    [Google Scholar]
  25. Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Schafer, W., Brown, A. J. & Gow, N. A. R. ( 1997; ). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65, 3529-3538.
    [Google Scholar]
  26. Iannini, P. B., Arai, G. D. & Laforce, F. M. ( 1977; ). Vascular clearance of blastospore and pseudomycelial phase Candida albicans. Sabouraudia 15, 201-205.[CrossRef]
    [Google Scholar]
  27. Jeunet, F. S., Meuwissen, H. J. & Good, R. A. ( 1970; ). Fate of Candida albicans in neonatally thymectomized rats. Proc Soc Exp Biol Med 133, 53-56.[CrossRef]
    [Google Scholar]
  28. Jiang, W., Gerhold, D., Kmiec, E. B., Hauser, M., Becker, J. M. & Koltin, Y. ( 1997; ). The topoisomerase I gene from Candida albicans. Microbiology 143, 377-386.[CrossRef]
    [Google Scholar]
  29. Kobayashi, S. D. & Cutler, J. E. ( 1998; ). Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol 6, 92-94.[CrossRef]
    [Google Scholar]
  30. Kvaal, C. A., Srikantha, T. & Soll, D. R. ( 1997; ). Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect Immun 65, 4468-4475.
    [Google Scholar]
  31. Lay, J., Henry, L. K., Clifford, J., Koltin, Y., Bulawa, C. E. & Becker, J. M. ( 1998; ). Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66, 5301-5306.
    [Google Scholar]
  32. Leberer, E., Ziegelbauer, K., Schmidt, A., Harcus, D., Dignard, D., Ash, J., Johnson, L. & Thomas, D. Y. ( 1997; ). Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 7, 539-546.[CrossRef]
    [Google Scholar]
  33. Leidich, S. D., Ibrahim, A. S., Fu, Y. & 8 other authors ( 1999; ). Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 273, 26078–26086.
    [Google Scholar]
  34. Lo, H. J., Kohler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.[CrossRef]
    [Google Scholar]
  35. Merson-Davies, L. A. & Odds, F. C. ( 1989; ). A morphology index for characterization of cell shape in Candida albicans. J Gen Microbiol 135, 3143-3152.
    [Google Scholar]
  36. Mio, T., Yabe, T., Sudoh, M., Satoh, Y., Nakajima, T., Arisawa, M. & Yamada-Okabe, H. ( 1996; ). Role of three chitin synthase genes in the growth of Candida albicans. J Bacteriol 178, 2416-2419.
    [Google Scholar]
  37. Monge, R. A., Navarro-Garcia, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sanchez, M. & Nombela, C. ( 1999; ). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181, 3058-3068.
    [Google Scholar]
  38. Odds, F. C. (1988). Morphogenesis in Candida, with special reference to C. albicans. In Candida and Candidosis, pp. 42–59. London: Baillière Tindall.
  39. Odds, F. C. ( 1991; ). Quantitative microculture system with standardized inocula for strain typing, susceptibility testing, and other physiologic measurements with Candida albicans and other yeasts. J Clin Microbiol 29, 2735-2740.
    [Google Scholar]
  40. Odds, F. C., Cockayne, A., Hayward, J. & Abbott, A. B. ( 1985; ). Effects of imidazole- and triazole-derivative antifungal compounds on the growth and morphological development of Candida albicans hyphae. J Gen Microbiol 131, 2581-2589.
    [Google Scholar]
  41. Rieg, G., Fu, Y., Ibrahim, A. S., Zhou, X., Filler, S. G. & Edwards, J. E.Jr ( 1999; ). Unanticipated heterogeneity in growth rate and virulence among Candida albicans AAF1 null mutants. Infect Immun 67, 3193-3198.
    [Google Scholar]
  42. Rink, R. D., Kaelin, C. R. & Fry, D. E. ( 1981; ). Lethal candidiasis in the rat: effects on metabolism and hepatic oxygen supply. J Surg Res 30, 75-79.[CrossRef]
    [Google Scholar]
  43. Sanglard, D., Hube, B., Monod, M., Odds, F. C. & Gow, N. A. R. ( 1997; ). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539-3546.
    [Google Scholar]
  44. Sarthy, A. V., McGonigal, T., Coen, D., Frost, D. J., Meulbroek, J. A. & Goldman, R. C. ( 1997; ). Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-β-glucosyltransferase. Microbiology 143, 367-376.[CrossRef]
    [Google Scholar]
  45. Sawyer, R. T., Moon, R. J. & Beneke, E. S. ( 1976; ). Hepatic clearance of Candida albicans in rats. Infect Immun 14, 1348-1355.
    [Google Scholar]
  46. Timpel, C., Strahl-Bolsinger, S., Ziegelbauer, K. & Ernst, J. F. ( 1998; ). Multiple functions of Pmt1p-mediated protein O-mannosylation in the fungal pathogen Candida albicans. J Biol Chem 273, 20837-20846.[CrossRef]
    [Google Scholar]
  47. Winblad, B. ( 1975; ). Experimental renal candidiasis in mice and guinea pigs. Acta Pathol Microbiol Scand A 83, 406-414.
    [Google Scholar]
  48. Wysong, D. R., Christin, L., Sugar, A. M., Robbins, P. W. & Diamond, R. D. ( 1998; ). Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 66, 1953-1961.
    [Google Scholar]
  49. Yaar, L., Mevarech, M. & Koltin, Y. ( 1997; ). A Candida albicans RAS-related gene (CaRSR1) is involved in budding, cell morphogenesis and hypha development. Microbiology 143, 3033-3044.[CrossRef]
    [Google Scholar]
  50. Yamada-Okabe, T., Mio, T., Ono, N., Kashima, Y., Matsui, M., Arisawa, M. & Yamada-Okabe, H. ( 1999; ). Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181, 7243-7247.
    [Google Scholar]
  51. Zhao, X. J., McElhaney-Feser, G. E., Sheridan, M. J., Broedel, S. E.Jr & Cihlar, R. L. ( 1997; ). Avirulence of Candida albicans FAS2 mutants in a mouse model of systemic candidiasis. Infect Immun 65, 829-832.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1881
Loading
/content/journal/micro/10.1099/00221287-146-8-1881
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error