1887

Abstract

Genome annotation requires explicit identification of gene function. This task frequently uses protein sequence alignments with examples having a known function. Genetic drift, co-evolution of subunits in protein complexes and a variety of other constraints interfere with the relevance of alignments. Using a specific class of proteins, it is shown that a simple data analysis approach can help solve some of the problems posed. The origin of ureohydrolases has been explored by comparing sequence similarity trees, maximizing amino acid alignment conservation. The trees separate agmatinases from arginases but suggest the presence of unknown biases responsible for unexpected positions of some enzymes. Using factorial correspondence analysis, a distance tree between sequences was established, comparing regions with gaps in the alignments. The gap tree gives a consistent picture of functional kinship, perhaps reflecting some aspects of phylogeny, with a clear domain of enzymes encoding two types of ureohydrolases (agmatinases and arginases) and activities related to, but different from ureohydrolases. Several annotated genes appeared to correspond to a wrong assignment if the trees were significant. They were cloned and their products expressed and identified biochemically. This substantiated the validity of the gap tree. Its organization suggests a very ancient origin of ureohydrolases. Some enzymes of eukaryotic origin are spread throughout the arginase part of the trees: they might have been derived from the genes found in the early symbiotic bacteria that became the organelles. They were transferred to the nucleus when symbiotic genes had to escape Muller’s ratchet. This work also shows that arginases and agmatinases share the same two manganese-ion-binding sites and exhibit only subtle differences that can be accounted for knowing the three-dimensional structure of arginases. In the absence of explicit biochemical data, extreme caution is needed when annotating genes having similarities to ureohydrolases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1815
2000-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461815a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1815&mimeType=html&fmt=ahah

References

  1. Baldauf S. L., Palmer J. D. 1993; Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562 [CrossRef]
    [Google Scholar]
  2. Bergstrom C. T., Pritchard J. 1998; Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes. Genetics 149:2135–2146
    [Google Scholar]
  3. Briozzo P., Golinelli-Pimpaneau B., Gilles A. M., Gaucher J. F., Burlacu-Miron S., Sakamoto H., Janin J., Barzu O. 1998; Structures of Escherichia coli CMP kinase alone and in complex with CDP: a new fold of the nucleoside monophosphate binding domain and insights into cytosine nucleotide specificity. Structure 6:1517–1527 [CrossRef]
    [Google Scholar]
  4. Chatton E. 1938 Titres et Travaux Scientifiques (1906–1937) Sottano, Italy: Sete;
    [Google Scholar]
  5. Cohen S. 1998 A Guide to the Polyamines Oxford: Oxford University Press;
    [Google Scholar]
  6. Cox E. C., Yanofsky C. 1967; Altered base ratios in the DNA of an Escherichia coli mutator strain. Proc Natl Acad Sci USA 58:1895–1902 [CrossRef]
    [Google Scholar]
  7. Danchin A. 1989; Homeotopic transformation and the origin of translation. Prog Biophys Mol Biol 54:81–86 [CrossRef]
    [Google Scholar]
  8. Danchin A., Guerdoux-Jamet P., Moszer I., Nitschké P. 2000; Mapping the bacterial cell architecture into the chromosome. Philos Trans R Soc B Biol Sci 355:179–190 [CrossRef]
    [Google Scholar]
  9. Diaz-Lazcoz Y., Aude J., Nitschké P., Chiapello H., Landès-Devauchelle C., Risler J. 1998; Evolution of genes, evolution of species: the case of aminoacyl-tRNA synthetases. Mol Biol Evol 15:1548–1561 [CrossRef]
    [Google Scholar]
  10. Duncan R., Faggart M. A., Roger A. J., Cornell N. W. 1999; Phylogenetic analysis of the 5-aminolevulinate synthase gene. Mol Biol Evol 16:383–396 erratum following 883 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.57c Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  12. Fitch W. M., Yasunobu K. T. 1975; Phylogenies from amino acid sequences aligned with gaps: the problem of gap weighting. J Mol Evol 5:1–24 [CrossRef]
    [Google Scholar]
  13. Foster P. G., Hickey D. A. 1999; Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48:284–290 [CrossRef]
    [Google Scholar]
  14. Granick S. 1957; Speculations on the origin and evolution of photosynthesis. Ann NY Acad Sci 69:292–308 [CrossRef]
    [Google Scholar]
  15. Gupta R. S. 1998a; Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491
    [Google Scholar]
  16. Gupta R. S. 1998b; What are archaebacteria: life’s third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol 29:695–707 [CrossRef]
    [Google Scholar]
  17. Haigh J. 1978; The accumulation of deleterious genes in a population – Muller’s Ratchet. Theor Popul Biol 14:251–267 [CrossRef]
    [Google Scholar]
  18. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  19. Hill M. O. 1974; Correspondence analysis: a neglected multivariate method. Appl Statistics 23:340–353 [CrossRef]
    [Google Scholar]
  20. Hirshfield I. N., Rosenfeld H. J., Leifer Z., Maas W. K. 1970; Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine. J Bacteriol 101:725–730
    [Google Scholar]
  21. Ibba M., Morgan S., Curnow A. W., Pridmore D. R., Vothknecht U. C., Gardner W., Lin W., Woese C. R., Soll D. 1997; A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122 [CrossRef]
    [Google Scholar]
  22. Jensen R. A. 1976; Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425 [CrossRef]
    [Google Scholar]
  23. Klein R. D., Geary T. G., Gibson A. S.8 other authors 1999; Reconstitution of a bacterial/plant polyamine biosynthesis pathway in Saccharomyces cerevisiae. Microbiology 145:301–307 [CrossRef]
    [Google Scholar]
  24. Koonin E. V., Aravind L. 1998; Genomics: re-evaluation of translation machinery evolution. Curr Biol 8:R266–R269 [CrossRef]
    [Google Scholar]
  25. Koonin E. V., Mushegian A. R., Galperin M. Y., Walker D. R. 1997; Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol 25:619–637 [CrossRef]
    [Google Scholar]
  26. Krumpelman P. M., Freyermuth S. K., Cannon J. F., Fink G. R., Polacco J. C. 1995; Nucleotide sequence of Arabidopsis thaliana arginase expressed in yeast. Plant Physiol 107:1479–1480 [CrossRef]
    [Google Scholar]
  27. Kyrpides N. C., Woese C. R. 1998; Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. Proc Natl Acad Sci USA 95:3726–3730 [CrossRef]
    [Google Scholar]
  28. Lebart L., Morineau A., Warwick K. A. 1984 Multivariate Descriptive Statistical Analysis New York: Wiley;
    [Google Scholar]
  29. Lyons-Weiler J., Hoelzer G. A. 1997; Escaping from the Felsenstein zone by detecting long branches in phylogenetic data. Mol Phylogenet Evol 8:375–384 [CrossRef]
    [Google Scholar]
  30. Mayr E. 1998; Two empires or three?. Proc Natl Acad Sci USA 95:9720–9723 [CrossRef]
    [Google Scholar]
  31. Morgenstern B., Frech K., Dress A., Werner T. 1998; dialign: finding local similarities by multiple sequence alignment. Bioinformatics 14:290–294 [CrossRef]
    [Google Scholar]
  32. Ouzounis C. A., Kyrpides N. C. 1994; On the evolution of arginases and related enzymes. J Mol Evol 39:101–104
    [Google Scholar]
  33. Ouzounis C., Kyrpides N. 1996; The emergence of major cellular processes in evolution. FEBS Lett 390:119–123 [CrossRef]
    [Google Scholar]
  34. Page D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  35. Park K. H., Cho Y. D. 1991; Purification of monomeric agmatine iminohydrolase from soybean. Biochem Biophys Res Commun 174:32–36 [CrossRef]
    [Google Scholar]
  36. Perozich J., Hempel J., Morris S. M. Jr 1998; Roles of conserved residues in the arginase family. Biochim Biophys Acta 1382:23–37 [CrossRef]
    [Google Scholar]
  37. Reis D. J., Regunathan S. 1999; Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann NY Acad Sci 881:65–80 [CrossRef]
    [Google Scholar]
  38. Ribeiro S., Golding G. B. 1998; The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15:779–788 [CrossRef]
    [Google Scholar]
  39. Roy S. 1999; Multifunctional enzymes and evolution of biosynthetic pathways: retro-evolution by jumps. Proteins 37:303–309 [CrossRef]
    [Google Scholar]
  40. Sastre M., Regunathan S., Galea E., Reis D. J. 1996; Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine. J Neurochem 67:1761–1765
    [Google Scholar]
  41. Sastre M., Galea E., Feinstein D., Reis D. J., Regunathan S. 1998; Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J 330:1405–1409
    [Google Scholar]
  42. Sekowska A., Bertin P., Danchin A. 1998; Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Mol Microbiol 29:851–858 [CrossRef]
    [Google Scholar]
  43. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy: the Principles and Practice of Numerical Classification San Francisco: Freeman;
    [Google Scholar]
  44. Thompson L. W., Krawiec S. 1983; Acquisitive evolution of ribitol dehydrogenase in Klebsiella pneumoniae. J Bacteriol 154:1027–1031
    [Google Scholar]
  45. Tourasse N. J., Gouy M. 1997; Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony. Mol Biol Evol 14:287–298 [CrossRef]
    [Google Scholar]
  46. Wilquet V., Van de Casteele M. 1999; The role of the codon first letter in the relationship between genomic GC content and protein amino acid composition. Res Microbiol 150:21–32 [CrossRef]
    [Google Scholar]
  47. Woese C. R. 1998; The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859 [CrossRef]
    [Google Scholar]
  48. Woese C. R., Fox G. E. 1977; Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090 [CrossRef]
    [Google Scholar]
  49. Yamamoto S., Nakao H., Yamasaki K., Takashina K., Suemoto Y., Shinoda S. 1988; Activities and properties of putrescine-biosynthetic enzymes in Vibrio parahaemolyticus. Microbiol Immunol 32:675–687 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1815
Loading
/content/journal/micro/10.1099/00221287-146-8-1815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error